P. Costa, Kuo-Chu Chang, Kathryn B. Laskey, T. Levitt, Wei Sun
{"title":"高级融合:发展形式化理论的问题","authors":"P. Costa, Kuo-Chu Chang, Kathryn B. Laskey, T. Levitt, Wei Sun","doi":"10.1109/ICIF.2010.5711860","DOIUrl":null,"url":null,"abstract":"Network-centric operations demand an increasingly sophisticated level of interoperation and information fusion for an escalating number and throughput of sensors and human processes. The resulting complexity of the systems being developed to face this environment render lower level fusion techniques alone simply insufficient to ensure interoperability, as they fail to consider subtle, but critical, aspects inherent in knowledge interchange. A fundamental mathematical theory of high-level information fusion is needed to address (1) the representation of semantics and pragmatics, (2) the mathematical framework supporting its algorithmic and computing processes, and (3) scalability of products such as common and user-defined operational pictures. We argue that there is no silver bullet for addressing these elements, and therefore any successful approach to the problem of high-level fusion must be systemic. In this paper, we propose the development of mathematical foundations that systemically address this problem from a decision theoretic perspective, and might seed the development of such fundamental theory. As a case study illustrating these techniques we present our current development of PROGNOS, a HLF system focused on the maritime domain.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"High-level fusion: Issues in developing a formal theory\",\"authors\":\"P. Costa, Kuo-Chu Chang, Kathryn B. Laskey, T. Levitt, Wei Sun\",\"doi\":\"10.1109/ICIF.2010.5711860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-centric operations demand an increasingly sophisticated level of interoperation and information fusion for an escalating number and throughput of sensors and human processes. The resulting complexity of the systems being developed to face this environment render lower level fusion techniques alone simply insufficient to ensure interoperability, as they fail to consider subtle, but critical, aspects inherent in knowledge interchange. A fundamental mathematical theory of high-level information fusion is needed to address (1) the representation of semantics and pragmatics, (2) the mathematical framework supporting its algorithmic and computing processes, and (3) scalability of products such as common and user-defined operational pictures. We argue that there is no silver bullet for addressing these elements, and therefore any successful approach to the problem of high-level fusion must be systemic. In this paper, we propose the development of mathematical foundations that systemically address this problem from a decision theoretic perspective, and might seed the development of such fundamental theory. As a case study illustrating these techniques we present our current development of PROGNOS, a HLF system focused on the maritime domain.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-level fusion: Issues in developing a formal theory
Network-centric operations demand an increasingly sophisticated level of interoperation and information fusion for an escalating number and throughput of sensors and human processes. The resulting complexity of the systems being developed to face this environment render lower level fusion techniques alone simply insufficient to ensure interoperability, as they fail to consider subtle, but critical, aspects inherent in knowledge interchange. A fundamental mathematical theory of high-level information fusion is needed to address (1) the representation of semantics and pragmatics, (2) the mathematical framework supporting its algorithmic and computing processes, and (3) scalability of products such as common and user-defined operational pictures. We argue that there is no silver bullet for addressing these elements, and therefore any successful approach to the problem of high-level fusion must be systemic. In this paper, we propose the development of mathematical foundations that systemically address this problem from a decision theoretic perspective, and might seed the development of such fundamental theory. As a case study illustrating these techniques we present our current development of PROGNOS, a HLF system focused on the maritime domain.