Java和Python软件度量属性的统计比较

Giuseppe Destefanis, Marco Ortu, S. Porru, S. Swift, M. Marchesi
{"title":"Java和Python软件度量属性的统计比较","authors":"Giuseppe Destefanis, Marco Ortu, S. Porru, S. Swift, M. Marchesi","doi":"10.1145/2897695.2897697","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical analysis of 20 opensource object-oriented systems with the purpose of detecting differences in metrics distribution between Java and Python projects. We selected ten Java projects from the Java Qualitas Corpus and ten projects written in Python. For each system, we considered 10 class-level software metrics.We performed a best fit procedure on the empirical distributions through the log-normal distribution and the double Pareto distribution to identify differences between the two languages. Even though the statistical distributions for projects written in Java and Python may appear the same for lower values of the metric, performing the procedure with the double Pareto distribution for the Number of Local Methods metric reveals that major differences can be noticed along the queue of the distributions. On the contrary, the same analysis performed with the Number of Statements metric reveals that only the initial portion of the double Pareto distribution shows differences between the two languages. In addition, the dispersion parameter associated to the log-normal distribution fit for the total Number Of Methods can be used for distinguishing Java projects from Python projects.","PeriodicalId":185963,"journal":{"name":"2016 IEEE/ACM 7th International Workshop on Emerging Trends in Software Metrics (WETSoM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Statistical Comparison of Java and Python Software Metric Properties\",\"authors\":\"Giuseppe Destefanis, Marco Ortu, S. Porru, S. Swift, M. Marchesi\",\"doi\":\"10.1145/2897695.2897697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a statistical analysis of 20 opensource object-oriented systems with the purpose of detecting differences in metrics distribution between Java and Python projects. We selected ten Java projects from the Java Qualitas Corpus and ten projects written in Python. For each system, we considered 10 class-level software metrics.We performed a best fit procedure on the empirical distributions through the log-normal distribution and the double Pareto distribution to identify differences between the two languages. Even though the statistical distributions for projects written in Java and Python may appear the same for lower values of the metric, performing the procedure with the double Pareto distribution for the Number of Local Methods metric reveals that major differences can be noticed along the queue of the distributions. On the contrary, the same analysis performed with the Number of Statements metric reveals that only the initial portion of the double Pareto distribution shows differences between the two languages. In addition, the dispersion parameter associated to the log-normal distribution fit for the total Number Of Methods can be used for distinguishing Java projects from Python projects.\",\"PeriodicalId\":185963,\"journal\":{\"name\":\"2016 IEEE/ACM 7th International Workshop on Emerging Trends in Software Metrics (WETSoM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 7th International Workshop on Emerging Trends in Software Metrics (WETSoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897695.2897697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 7th International Workshop on Emerging Trends in Software Metrics (WETSoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897695.2897697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文对20个开源面向对象系统进行了统计分析,目的是检测Java和Python项目之间度量分布的差异。我们从Java Qualitas语料库中选择了10个Java项目和10个用Python编写的项目。对于每个系统,我们考虑了10个类级别的软件度量。我们通过对数正态分布和双Pareto分布对经验分布进行了最佳拟合程序,以识别两种语言之间的差异。尽管用Java和Python编写的项目的统计分布对于较低的度量值可能看起来是相同的,但对局部方法数量度量使用双Pareto分布执行过程表明,可以注意到分布队列中的主要差异。相反,使用语句数度量执行的相同分析显示,只有双Pareto分布的初始部分显示出两种语言之间的差异。此外,与方法总数相匹配的对数正态分布相关联的分散参数可用于区分Java项目和Python项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Comparison of Java and Python Software Metric Properties
This paper presents a statistical analysis of 20 opensource object-oriented systems with the purpose of detecting differences in metrics distribution between Java and Python projects. We selected ten Java projects from the Java Qualitas Corpus and ten projects written in Python. For each system, we considered 10 class-level software metrics.We performed a best fit procedure on the empirical distributions through the log-normal distribution and the double Pareto distribution to identify differences between the two languages. Even though the statistical distributions for projects written in Java and Python may appear the same for lower values of the metric, performing the procedure with the double Pareto distribution for the Number of Local Methods metric reveals that major differences can be noticed along the queue of the distributions. On the contrary, the same analysis performed with the Number of Statements metric reveals that only the initial portion of the double Pareto distribution shows differences between the two languages. In addition, the dispersion parameter associated to the log-normal distribution fit for the total Number Of Methods can be used for distinguishing Java projects from Python projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信