基于机器学习技术的微阵列数据分类性能分析

S. Pani, B. Ratha, Ajay Kumar Mishra
{"title":"基于机器学习技术的微阵列数据分类性能分析","authors":"S. Pani, B. Ratha, Ajay Kumar Mishra","doi":"10.4018/IJKDB.2015070104","DOIUrl":null,"url":null,"abstract":"Microarray technology of DNA permits simultaneous monitoring and determining of thousands of gene expression activation levels in a single experiment. Data mining technique such as classification is extensively used on microarray data for medical diagnosis and gene analysis. However, high dimensionality of the data affects the performance of classification and prediction. Consequently, a key issue in microarray data is feature selection and dimensionality reduction in order to achieve better classification and predictive accuracy. There are several machine learning approaches available for feature selection. In this study, the authors use Particle Swarm Organization PSO and Genetic Algorithm GA to find the performance of several popular classifiers on a set of microarray datasets. Experimental results conclude that feature selection affects the performance.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Microarray Data Classification using Machine Learning Techniques\",\"authors\":\"S. Pani, B. Ratha, Ajay Kumar Mishra\",\"doi\":\"10.4018/IJKDB.2015070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology of DNA permits simultaneous monitoring and determining of thousands of gene expression activation levels in a single experiment. Data mining technique such as classification is extensively used on microarray data for medical diagnosis and gene analysis. However, high dimensionality of the data affects the performance of classification and prediction. Consequently, a key issue in microarray data is feature selection and dimensionality reduction in order to achieve better classification and predictive accuracy. There are several machine learning approaches available for feature selection. In this study, the authors use Particle Swarm Organization PSO and Genetic Algorithm GA to find the performance of several popular classifiers on a set of microarray datasets. Experimental results conclude that feature selection affects the performance.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJKDB.2015070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2015070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DNA微阵列技术允许在单个实验中同时监测和确定数千个基因表达激活水平。分类等数据挖掘技术广泛应用于医学诊断和基因分析的微阵列数据中。然而,数据的高维影响了分类和预测的性能。因此,微阵列数据的一个关键问题是特征选择和降维,以达到更好的分类和预测精度。有几种机器学习方法可用于特征选择。在这项研究中,作者使用粒子群组织PSO和遗传算法GA来寻找几种流行的分类器在一组微阵列数据集上的性能。实验结果表明,特征选择对性能有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Microarray Data Classification using Machine Learning Techniques
Microarray technology of DNA permits simultaneous monitoring and determining of thousands of gene expression activation levels in a single experiment. Data mining technique such as classification is extensively used on microarray data for medical diagnosis and gene analysis. However, high dimensionality of the data affects the performance of classification and prediction. Consequently, a key issue in microarray data is feature selection and dimensionality reduction in order to achieve better classification and predictive accuracy. There are several machine learning approaches available for feature selection. In this study, the authors use Particle Swarm Organization PSO and Genetic Algorithm GA to find the performance of several popular classifiers on a set of microarray datasets. Experimental results conclude that feature selection affects the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信