基于上下文感知的大规模USN中间件

Won-Hee Han, Sung-Won Kim, Sun-Mi Park, Chang-Wu Lee, J. Park, Y. Jeong
{"title":"基于上下文感知的大规模USN中间件","authors":"Won-Hee Han, Sung-Won Kim, Sun-Mi Park, Chang-Wu Lee, J. Park, Y. Jeong","doi":"10.1109/EUC.2008.211","DOIUrl":null,"url":null,"abstract":"This paper designs LS-ware (Large-Scale USN middleware) in order to collect and save large-scale sensing data and to analyze collected data and run status sensing function. LS-ware not only provides USN middlewarepsilas basic function such as Meta information, quality process, or status management, but also makes large-scale sensing data light-weighted and provides a suitable event processing feature. LS-ware develops and utilizes a four level scheduling algorithm for continuous large-scale sensing data collection. In order to manage sensing data more effectively, it parses data packet structure, extracts information, and looses datapsilas weight. It recognizes an event from light weighted sensing data, and sends the status information to a client.","PeriodicalId":430277,"journal":{"name":"2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large-Scale USN Middleware Based on Context-Aware\",\"authors\":\"Won-Hee Han, Sung-Won Kim, Sun-Mi Park, Chang-Wu Lee, J. Park, Y. Jeong\",\"doi\":\"10.1109/EUC.2008.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs LS-ware (Large-Scale USN middleware) in order to collect and save large-scale sensing data and to analyze collected data and run status sensing function. LS-ware not only provides USN middlewarepsilas basic function such as Meta information, quality process, or status management, but also makes large-scale sensing data light-weighted and provides a suitable event processing feature. LS-ware develops and utilizes a four level scheduling algorithm for continuous large-scale sensing data collection. In order to manage sensing data more effectively, it parses data packet structure, extracts information, and looses datapsilas weight. It recognizes an event from light weighted sensing data, and sends the status information to a client.\",\"PeriodicalId\":430277,\"journal\":{\"name\":\"2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC.2008.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2008.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文设计了LS-ware (Large-Scale USN middleware),用于采集和保存大规模的感知数据,并对采集到的数据进行分析和运行状态感知功能。LS-ware不仅提供了USN中间件的Meta信息、质量处理或状态管理等基本功能,还使大规模传感数据轻量化,并提供了合适的事件处理功能。LS-ware开发并利用了一种四级调度算法,用于连续大规模的传感数据采集。为了更有效地管理传感数据,该算法对数据包结构进行解析,提取信息,降低数据权重。它从轻量级感知数据中识别事件,并将状态信息发送给客户端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale USN Middleware Based on Context-Aware
This paper designs LS-ware (Large-Scale USN middleware) in order to collect and save large-scale sensing data and to analyze collected data and run status sensing function. LS-ware not only provides USN middlewarepsilas basic function such as Meta information, quality process, or status management, but also makes large-scale sensing data light-weighted and provides a suitable event processing feature. LS-ware develops and utilizes a four level scheduling algorithm for continuous large-scale sensing data collection. In order to manage sensing data more effectively, it parses data packet structure, extracts information, and looses datapsilas weight. It recognizes an event from light weighted sensing data, and sends the status information to a client.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信