改进治疗应用的智能介孔纳米材料

Sandhya Sanand, A. Tyagi, Sandeep Kumar, G. Kaul
{"title":"改进治疗应用的智能介孔纳米材料","authors":"Sandhya Sanand, A. Tyagi, Sandeep Kumar, G. Kaul","doi":"10.4018/978-1-7998-8591-7.ch016","DOIUrl":null,"url":null,"abstract":"Nanomaterials have revolutionized the drug delivery and therapeutic industry due to their unique physical characteristics, which render them extremely manipulative at nano-scale. One such category of nanomaterials is mesoporous silica nanoparticles. Due to their small size and rigid honeycomb-like structure, they are highly conducive for packaging of drugs, dyes, antibodies, etc. In addition, they show excellent biocompatibility. These new generation nanomaterials can be further functionalized by incorporating surface modifications, thus increasing their acceptability as carriers for drugs and molecules. In this chapter, a brief and comprehensive review covering various aspects of the recent advancements in synthesis of mesoporous nanomaterials and post-synthesis strategies for functionalization has been presented. Further, it also sheds light on how efficiently these smart nano-carriers are involved in transport and site-specific delivery of highly toxic drugs, like chemotherapeutic agents for cancer treatment, and their biocompatibility evaluation from a biosafety point of view.","PeriodicalId":145165,"journal":{"name":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Mesoporous Nanomaterials With Improved Therapeutic Applications\",\"authors\":\"Sandhya Sanand, A. Tyagi, Sandeep Kumar, G. Kaul\",\"doi\":\"10.4018/978-1-7998-8591-7.ch016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials have revolutionized the drug delivery and therapeutic industry due to their unique physical characteristics, which render them extremely manipulative at nano-scale. One such category of nanomaterials is mesoporous silica nanoparticles. Due to their small size and rigid honeycomb-like structure, they are highly conducive for packaging of drugs, dyes, antibodies, etc. In addition, they show excellent biocompatibility. These new generation nanomaterials can be further functionalized by incorporating surface modifications, thus increasing their acceptability as carriers for drugs and molecules. In this chapter, a brief and comprehensive review covering various aspects of the recent advancements in synthesis of mesoporous nanomaterials and post-synthesis strategies for functionalization has been presented. Further, it also sheds light on how efficiently these smart nano-carriers are involved in transport and site-specific delivery of highly toxic drugs, like chemotherapeutic agents for cancer treatment, and their biocompatibility evaluation from a biosafety point of view.\",\"PeriodicalId\":145165,\"journal\":{\"name\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-8591-7.ch016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8591-7.ch016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料由于其独特的物理特性,使其在纳米尺度上具有极强的可操作性,从而彻底改变了药物输送和治疗行业。其中一类纳米材料是介孔二氧化硅纳米颗粒。由于其体积小,具有刚性的蜂窝状结构,非常有利于药物、染料、抗体等的包装。此外,它们还具有良好的生物相容性。这些新一代纳米材料可以通过结合表面修饰进一步功能化,从而提高其作为药物和分子载体的可接受性。在本章中,简要而全面地综述了介孔纳米材料合成的各个方面的最新进展以及合成后的功能化策略。此外,它还揭示了这些智能纳米载体在高毒性药物(如用于癌症治疗的化疗药物)的运输和特定部位递送中的效率,以及从生物安全的角度对它们的生物相容性进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Mesoporous Nanomaterials With Improved Therapeutic Applications
Nanomaterials have revolutionized the drug delivery and therapeutic industry due to their unique physical characteristics, which render them extremely manipulative at nano-scale. One such category of nanomaterials is mesoporous silica nanoparticles. Due to their small size and rigid honeycomb-like structure, they are highly conducive for packaging of drugs, dyes, antibodies, etc. In addition, they show excellent biocompatibility. These new generation nanomaterials can be further functionalized by incorporating surface modifications, thus increasing their acceptability as carriers for drugs and molecules. In this chapter, a brief and comprehensive review covering various aspects of the recent advancements in synthesis of mesoporous nanomaterials and post-synthesis strategies for functionalization has been presented. Further, it also sheds light on how efficiently these smart nano-carriers are involved in transport and site-specific delivery of highly toxic drugs, like chemotherapeutic agents for cancer treatment, and their biocompatibility evaluation from a biosafety point of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信