量子卷积码设计及其编码器架构

Jun Jin Kong, K. Parhi
{"title":"量子卷积码设计及其编码器架构","authors":"Jun Jin Kong, K. Parhi","doi":"10.1109/ACSSC.2004.1399317","DOIUrl":null,"url":null,"abstract":"In this paper, design of quantum convolutional codes and their encoder architectures have been investigated. We claim that rate-1/(n+1) quantum systematic convolutional codes can be constructed from rate-1/n classical nonsystematic convolutional codes, where n is greater than or equal to 2. The free distances (d/sub free/) of proposed rate-1/(n+1) quantum systematic convolutional codes are larger than that of original rate-1/n classical nonsystematic convolutional codes. A quantum convolutional code encoder can be implemented by using quantum linear feed-forward shift registers and quantum exclusive-OR (controlled-NOT: CNOT) gates. A quantum memory may be used as a quantum state delay element of a quantum register. It is also shown that different encoder architectures one needed for quantum nonsuperposition and superposition state inputs. For quantum superposition state input, additional Hadamard gates should be used in conjunction with a quantum convolutional code encoder for quantum nonsuperposition state input.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum convolutional codes design and their encoder architectures\",\"authors\":\"Jun Jin Kong, K. Parhi\",\"doi\":\"10.1109/ACSSC.2004.1399317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, design of quantum convolutional codes and their encoder architectures have been investigated. We claim that rate-1/(n+1) quantum systematic convolutional codes can be constructed from rate-1/n classical nonsystematic convolutional codes, where n is greater than or equal to 2. The free distances (d/sub free/) of proposed rate-1/(n+1) quantum systematic convolutional codes are larger than that of original rate-1/n classical nonsystematic convolutional codes. A quantum convolutional code encoder can be implemented by using quantum linear feed-forward shift registers and quantum exclusive-OR (controlled-NOT: CNOT) gates. A quantum memory may be used as a quantum state delay element of a quantum register. It is also shown that different encoder architectures one needed for quantum nonsuperposition and superposition state inputs. For quantum superposition state input, additional Hadamard gates should be used in conjunction with a quantum convolutional code encoder for quantum nonsuperposition state input.\",\"PeriodicalId\":396779,\"journal\":{\"name\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2004.1399317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了量子卷积码的设计及其编码器结构。我们提出速率为1/(n+1)的量子系统卷积码可以由速率为1/n的经典非系统卷积码构造而成,其中n大于等于2。本文提出的速率为1/(n+1)的量子系统卷积码的自由距离(d/sub free/)大于原始速率为1/n的经典非系统卷积码的自由距离。量子卷积码编码器可以使用量子线性前馈移位寄存器和量子异或门来实现。量子存储器可以用作量子寄存器的量子态延迟元件。研究还表明,量子非叠加态和叠加态输入需要不同的编码器结构。对于量子叠加态输入,应使用额外的Hadamard门与量子卷积码编码器一起用于量子非叠加态输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum convolutional codes design and their encoder architectures
In this paper, design of quantum convolutional codes and their encoder architectures have been investigated. We claim that rate-1/(n+1) quantum systematic convolutional codes can be constructed from rate-1/n classical nonsystematic convolutional codes, where n is greater than or equal to 2. The free distances (d/sub free/) of proposed rate-1/(n+1) quantum systematic convolutional codes are larger than that of original rate-1/n classical nonsystematic convolutional codes. A quantum convolutional code encoder can be implemented by using quantum linear feed-forward shift registers and quantum exclusive-OR (controlled-NOT: CNOT) gates. A quantum memory may be used as a quantum state delay element of a quantum register. It is also shown that different encoder architectures one needed for quantum nonsuperposition and superposition state inputs. For quantum superposition state input, additional Hadamard gates should be used in conjunction with a quantum convolutional code encoder for quantum nonsuperposition state input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信