基于神经网络的预定义约束非线性系统控制

Fei Gao, Lu Zhang, Zhi Weng
{"title":"基于神经网络的预定义约束非线性系统控制","authors":"Fei Gao, Lu Zhang, Zhi Weng","doi":"10.1109/ICIST55546.2022.9926890","DOIUrl":null,"url":null,"abstract":"This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of nonlinear systems with predefined constraints using neural networks\",\"authors\":\"Fei Gao, Lu Zhang, Zhi Weng\",\"doi\":\"10.1109/ICIST55546.2022.9926890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的非线性映射来解决输出约束问题。我们将约束跟踪误差转化为等效的无约束跟踪误差。然后研究了具有预定义约束的非线性系统的自适应神经网络控制。该方案保证了闭环系统中所有信号都是有界的,系统输出在不违反预定义约束的情况下渐近地跟踪参考轨迹。最后给出了一个数值算例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of nonlinear systems with predefined constraints using neural networks
This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信