{"title":"基于神经网络的预定义约束非线性系统控制","authors":"Fei Gao, Lu Zhang, Zhi Weng","doi":"10.1109/ICIST55546.2022.9926890","DOIUrl":null,"url":null,"abstract":"This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of nonlinear systems with predefined constraints using neural networks\",\"authors\":\"Fei Gao, Lu Zhang, Zhi Weng\",\"doi\":\"10.1109/ICIST55546.2022.9926890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of nonlinear systems with predefined constraints using neural networks
This paper proposes a new nonlinear mapping to address the output constraint problem. We transform the constrained tracking error into an equivalent unconstrained one. Then adaptive neural network (NN) control with predefined constraints is studied for nonlinear systems. The proposed scheme guarantees that all the signals in the closed-loop system are bounded and the system output asymptotically tracks the reference trajectory without the violation of the predefined constraints. Finally, we give a numerical example to show effectiveness of the proposed scheme.