广义分配问题的拉格朗日松弛和dantzigg - wolfe分解研究

E. Gattal, Ala-Eddine Benrazek
{"title":"广义分配问题的拉格朗日松弛和dantzigg - wolfe分解研究","authors":"E. Gattal, Ala-Eddine Benrazek","doi":"10.1109/icnas53565.2021.9628940","DOIUrl":null,"url":null,"abstract":"This article presents a comparative study of two mathematical methods for data reduction, namely Lagrangian Relaxation (LR) and Dantzig-Wolfe Decompositions (DWD) in Integer Linear Programming (ILP). The analysis is performed on the classical Generalized Assignment Problem (GAP). To this end, we have used the general-purpose MIP solver. However, the experimentation is done on a widely used GAP benchmark of large and complex instances. The two methods have been evaluated from the standpoint of solution quality and the time required to find it.","PeriodicalId":321454,"journal":{"name":"2021 International Conference on Networking and Advanced Systems (ICNAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Lagrangian Relaxation and Dantzig-Wolfe Decompositions for the Generalized Assignment Problem\",\"authors\":\"E. Gattal, Ala-Eddine Benrazek\",\"doi\":\"10.1109/icnas53565.2021.9628940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a comparative study of two mathematical methods for data reduction, namely Lagrangian Relaxation (LR) and Dantzig-Wolfe Decompositions (DWD) in Integer Linear Programming (ILP). The analysis is performed on the classical Generalized Assignment Problem (GAP). To this end, we have used the general-purpose MIP solver. However, the experimentation is done on a widely used GAP benchmark of large and complex instances. The two methods have been evaluated from the standpoint of solution quality and the time required to find it.\",\"PeriodicalId\":321454,\"journal\":{\"name\":\"2021 International Conference on Networking and Advanced Systems (ICNAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking and Advanced Systems (ICNAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icnas53565.2021.9628940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Advanced Systems (ICNAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icnas53565.2021.9628940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较研究了整数线性规划(ILP)中数据约简的两种数学方法——拉格朗日松弛法(LR)和dantzigg - wolfe分解法(DWD)。对经典的广义分配问题(GAP)进行了分析。为此,我们使用了通用的MIP求解器。然而,实验是在广泛使用的大型复杂实例的GAP基准上进行的。从溶液质量和找到溶液所需时间的角度对这两种方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Lagrangian Relaxation and Dantzig-Wolfe Decompositions for the Generalized Assignment Problem
This article presents a comparative study of two mathematical methods for data reduction, namely Lagrangian Relaxation (LR) and Dantzig-Wolfe Decompositions (DWD) in Integer Linear Programming (ILP). The analysis is performed on the classical Generalized Assignment Problem (GAP). To this end, we have used the general-purpose MIP solver. However, the experimentation is done on a widely used GAP benchmark of large and complex instances. The two methods have been evaluated from the standpoint of solution quality and the time required to find it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信