{"title":"利用玻尔兹曼采样器和完整规范在线性时间内精确采样莫兹金树","authors":"A. Bacher, O. Bodini, A. Jacquot","doi":"10.1137/1.9781611973037.7","DOIUrl":null,"url":null,"abstract":"Boltzmann samplers are a kind of random samplers; in 2004, Duchon, Flajolet, Louchard and Schaeffer showed that given a combinatorial class and a combinatorial specification for that class, one can automatically build a Boltzmann sampler. In this paper, we introduce a Boltzmann sampler for Motzkin trees built from a holonomic specification, that is, a specification that uses the pointing operator. This sampler is inspired by Remy's algorithm on binary trees. We show that our algorithm gives an exact size sampler with a linear time and space complexity in average.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Exact-size Sampling for Motzkin Trees in Linear Time via Boltzmann Samplers and Holonomic Specification\",\"authors\":\"A. Bacher, O. Bodini, A. Jacquot\",\"doi\":\"10.1137/1.9781611973037.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boltzmann samplers are a kind of random samplers; in 2004, Duchon, Flajolet, Louchard and Schaeffer showed that given a combinatorial class and a combinatorial specification for that class, one can automatically build a Boltzmann sampler. In this paper, we introduce a Boltzmann sampler for Motzkin trees built from a holonomic specification, that is, a specification that uses the pointing operator. This sampler is inspired by Remy's algorithm on binary trees. We show that our algorithm gives an exact size sampler with a linear time and space complexity in average.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973037.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973037.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact-size Sampling for Motzkin Trees in Linear Time via Boltzmann Samplers and Holonomic Specification
Boltzmann samplers are a kind of random samplers; in 2004, Duchon, Flajolet, Louchard and Schaeffer showed that given a combinatorial class and a combinatorial specification for that class, one can automatically build a Boltzmann sampler. In this paper, we introduce a Boltzmann sampler for Motzkin trees built from a holonomic specification, that is, a specification that uses the pointing operator. This sampler is inspired by Remy's algorithm on binary trees. We show that our algorithm gives an exact size sampler with a linear time and space complexity in average.