P. Junod, Julien Rinaldini, J. Wehrli, Julie Michielin
{"title":"obfusator - llvm——大众软件保护","authors":"P. Junod, Julien Rinaldini, J. Wehrli, Julie Michielin","doi":"10.1109/SPRO.2015.10","DOIUrl":null,"url":null,"abstract":"Software security with respect to reverse-engineering is a challenging discipline that has been researched for several years and which is still active. At the same time, this field is inherently practical, and thus of industrial relevance: indeed, protecting a piece of software against tampering, malicious modifications or reverse-engineering is a very difficult task. In this paper, we present and discuss a software obfuscation prototype tool based on the LLVM compilation suite. Our tool is built as different passes, where some of them have been open-sourced and are freely available, that work on the LLVM Intermediate Representation (IR) code. This approach brings several advantages, including the fact that it is language-agnostic and mostly independent of the target architecture. Our current prototype supports basic instruction substitutions, insertion of bogus control-flow constructs mixed with opaque predicates, control-flow flattening, procedures merging as well as a code tamper-proofing algorithm embedding code and data checksums directly in the control-flow flattening mechanism.","PeriodicalId":338591,"journal":{"name":"2015 IEEE/ACM 1st International Workshop on Software Protection","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"230","resultStr":"{\"title\":\"Obfuscator-LLVM -- Software Protection for the Masses\",\"authors\":\"P. Junod, Julien Rinaldini, J. Wehrli, Julie Michielin\",\"doi\":\"10.1109/SPRO.2015.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software security with respect to reverse-engineering is a challenging discipline that has been researched for several years and which is still active. At the same time, this field is inherently practical, and thus of industrial relevance: indeed, protecting a piece of software against tampering, malicious modifications or reverse-engineering is a very difficult task. In this paper, we present and discuss a software obfuscation prototype tool based on the LLVM compilation suite. Our tool is built as different passes, where some of them have been open-sourced and are freely available, that work on the LLVM Intermediate Representation (IR) code. This approach brings several advantages, including the fact that it is language-agnostic and mostly independent of the target architecture. Our current prototype supports basic instruction substitutions, insertion of bogus control-flow constructs mixed with opaque predicates, control-flow flattening, procedures merging as well as a code tamper-proofing algorithm embedding code and data checksums directly in the control-flow flattening mechanism.\",\"PeriodicalId\":338591,\"journal\":{\"name\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"230\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPRO.2015.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 1st International Workshop on Software Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPRO.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obfuscator-LLVM -- Software Protection for the Masses
Software security with respect to reverse-engineering is a challenging discipline that has been researched for several years and which is still active. At the same time, this field is inherently practical, and thus of industrial relevance: indeed, protecting a piece of software against tampering, malicious modifications or reverse-engineering is a very difficult task. In this paper, we present and discuss a software obfuscation prototype tool based on the LLVM compilation suite. Our tool is built as different passes, where some of them have been open-sourced and are freely available, that work on the LLVM Intermediate Representation (IR) code. This approach brings several advantages, including the fact that it is language-agnostic and mostly independent of the target architecture. Our current prototype supports basic instruction substitutions, insertion of bogus control-flow constructs mixed with opaque predicates, control-flow flattening, procedures merging as well as a code tamper-proofing algorithm embedding code and data checksums directly in the control-flow flattening mechanism.