Riki Wahyudi, Yulian Fauzi, José Rizal
{"title":"ANALISIS KEMISKINAN EKSTREM PROVINSI BENGKULU MENGGUNAKAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) DENGAN PEMBOBOT ADAPTIVE GAUSSIAN KERNEL DAN ADAPTIVE BI-SQUARE","authors":"Riki Wahyudi, Yulian Fauzi, José Rizal","doi":"10.24036/unpjomath.v8i2.14914","DOIUrl":null,"url":null,"abstract":"Extreme poverty is a condition of inability to fulfill basic needs, namely the need for food, clean drinking water, proper sanitation, health, shelter, education, and access to information which is not only limited to income, but also access to social services (United Nations, 1996).Geographically Weighted Regression (GWR) model is used in mapping extreme poverty of all level 2 regions in Bengkulu Province using Adaptive Gaussian Kernel and Adaptive Bi-Square weights as well as finding the best GWR model and analyzing the model against extreme poverty mapping of Bengkulu Province. The data used in this study is the March 2022 Susenas data. Of the 18 variables that allegedly affect extreme poverty, only 6 variables support the assumption of spatial heterogeneity in GWR modeling. Based on the selection of the best model, it is known that the GWR model with Adaptive Bisquare Kernel weighting is a suitable model for the percentage of extreme poor people in Bengkulu Province with the smallest AIC value","PeriodicalId":244588,"journal":{"name":"Journal of Mathematics UNP","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics UNP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24036/unpjomath.v8i2.14914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极端贫穷是一种无法满足基本需要的状况,即无法满足对食物、清洁饮用水、适当卫生、保健、住房、教育和获取信息的需要,这些信息不仅限于收入,而且限于获得社会服务(联合国,1996年)。利用地理加权回归(GWR)模型,利用自适应高斯核(Adaptive Gaussian Kernel)和自适应双平方(Adaptive Bi-Square)权重对明古鲁省所有二级地区的极端贫困进行了映射,并找到了最佳GWR模型,并对模型与明古鲁省极端贫困映射进行了分析。本研究使用的数据为2022年3月的Susenas数据。在据称影响极端贫困的18个变量中,只有6个变量支持GWR模型的空间异质性假设。通过对最佳模型的选择可知,具有自适应bissquared Kernel加权的GWR模型是AIC值最小的Bengkulu省极端贫困人口百分比的合适模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS KEMISKINAN EKSTREM PROVINSI BENGKULU MENGGUNAKAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) DENGAN PEMBOBOT ADAPTIVE GAUSSIAN KERNEL DAN ADAPTIVE BI-SQUARE
Extreme poverty is a condition of inability to fulfill basic needs, namely the need for food, clean drinking water, proper sanitation, health, shelter, education, and access to information which is not only limited to income, but also access to social services (United Nations, 1996).Geographically Weighted Regression (GWR) model is used in mapping extreme poverty of all level 2 regions in Bengkulu Province using Adaptive Gaussian Kernel and Adaptive Bi-Square weights as well as finding the best GWR model and analyzing the model against extreme poverty mapping of Bengkulu Province. The data used in this study is the March 2022 Susenas data. Of the 18 variables that allegedly affect extreme poverty, only 6 variables support the assumption of spatial heterogeneity in GWR modeling. Based on the selection of the best model, it is known that the GWR model with Adaptive Bisquare Kernel weighting is a suitable model for the percentage of extreme poor people in Bengkulu Province with the smallest AIC value
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信