基于等效电路+ UKF滤波算法的锂电池SOC校正技术

Huang Chencheng, L. Jian
{"title":"基于等效电路+ UKF滤波算法的锂电池SOC校正技术","authors":"Huang Chencheng, L. Jian","doi":"10.1109/AICIT55386.2022.9930284","DOIUrl":null,"url":null,"abstract":"In matlablSimulink environment, the first-order Thevenin equivalent circuit model and the traceless Kalman filtering algorithm are established, and theparameters of different SOCs and temperatures on the battery model are identified by establishing hybrid power pulse characteristic experiments, and the distinguished parameters are substituted into the UKF algorithm for simulation experiments. Experimental results show that the estimation of the state of charge has high accuracy.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium battery SOC correction technology based on equivalent circuit + UKF filtering algorithm\",\"authors\":\"Huang Chencheng, L. Jian\",\"doi\":\"10.1109/AICIT55386.2022.9930284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In matlablSimulink environment, the first-order Thevenin equivalent circuit model and the traceless Kalman filtering algorithm are established, and theparameters of different SOCs and temperatures on the battery model are identified by establishing hybrid power pulse characteristic experiments, and the distinguished parameters are substituted into the UKF algorithm for simulation experiments. Experimental results show that the estimation of the state of charge has high accuracy.\",\"PeriodicalId\":231070,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICIT55386.2022.9930284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在matlablSimulink环境下,建立一阶Thevenin等效电路模型和无迹卡尔曼滤波算法,通过建立混合功率脉冲特性实验,对电池模型上不同soc和温度下的参数进行辨识,并将辨识出的参数代入UKF算法进行仿真实验。实验结果表明,该方法具有较高的电荷状态估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium battery SOC correction technology based on equivalent circuit + UKF filtering algorithm
In matlablSimulink environment, the first-order Thevenin equivalent circuit model and the traceless Kalman filtering algorithm are established, and theparameters of different SOCs and temperatures on the battery model are identified by establishing hybrid power pulse characteristic experiments, and the distinguished parameters are substituted into the UKF algorithm for simulation experiments. Experimental results show that the estimation of the state of charge has high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信