用多模态优化方法识别复杂网络中的重叠社区

F. O. França, G. P. Coelho
{"title":"用多模态优化方法识别复杂网络中的重叠社区","authors":"F. O. França, G. P. Coelho","doi":"10.1109/CEC.2013.6557580","DOIUrl":null,"url":null,"abstract":"The analysis of complex networks is an important research topic that helps us understand the underlying behavior of complex systems and the interactions of their components. One particularly relevant analysis is the detection of communities formed by such interactions. Most community detection algorithms work as optimization tools that minimize a given quality function, while assuming that each node belongs to a single community. However, most complex networks contain nodes that belong to two or more communities, which are called bridges. The identification of bridges is crucial to several problems, as they often play important roles in the system described by the network. By exploiting the multimodality of quality functions, it is possible to obtain distinct optimal communities where, in each solution, each bridge node belongs to a distinct community. This paper proposes a technique that tries to identify a set of (possibly) overlapping communities by combining diverse solutions contained in a pool, which correspond to disjoint community partitions of a given network. To obtain the pool of partitions, an adapted version of the immune-inspired algorithm named cob-aiNet[C] was adopted here. The proposed methodology was applied to four real-world social networks and the obtained results were compared to those reported in the literature. The comparisons have shown that the proposed approach is competitive and even capable of overcoming the best results reported for some of the problems.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying overlapping communities in complex networks with multimodal optimization\",\"authors\":\"F. O. França, G. P. Coelho\",\"doi\":\"10.1109/CEC.2013.6557580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of complex networks is an important research topic that helps us understand the underlying behavior of complex systems and the interactions of their components. One particularly relevant analysis is the detection of communities formed by such interactions. Most community detection algorithms work as optimization tools that minimize a given quality function, while assuming that each node belongs to a single community. However, most complex networks contain nodes that belong to two or more communities, which are called bridges. The identification of bridges is crucial to several problems, as they often play important roles in the system described by the network. By exploiting the multimodality of quality functions, it is possible to obtain distinct optimal communities where, in each solution, each bridge node belongs to a distinct community. This paper proposes a technique that tries to identify a set of (possibly) overlapping communities by combining diverse solutions contained in a pool, which correspond to disjoint community partitions of a given network. To obtain the pool of partitions, an adapted version of the immune-inspired algorithm named cob-aiNet[C] was adopted here. The proposed methodology was applied to four real-world social networks and the obtained results were compared to those reported in the literature. The comparisons have shown that the proposed approach is competitive and even capable of overcoming the best results reported for some of the problems.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

复杂网络的分析是一个重要的研究课题,它有助于我们理解复杂系统的潜在行为及其组成部分之间的相互作用。一项特别相关的分析是检测由这种相互作用形成的社区。大多数社区检测算法作为最小化给定质量函数的优化工具,同时假设每个节点属于单个社区。然而,大多数复杂的网络包含属于两个或多个社区的节点,这些社区被称为桥。桥梁的识别对于许多问题都是至关重要的,因为它们通常在网络描述的系统中扮演着重要的角色。通过利用质量函数的多模态,可以获得不同的最优群体,在每个解中,每个桥节点属于一个不同的群体。本文提出了一种技术,通过组合池中包含的不同解决方案来识别一组(可能)重叠的社区,这些解决方案对应于给定网络中不相交的社区分区。为了获得分区池,本文采用了免疫启发算法的改进版本cob-aiNet[C]。所提出的方法应用于四个现实世界的社交网络,并与文献中报道的结果进行了比较。比较表明,所提出的方法具有竞争力,甚至能够克服对某些问题报道的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying overlapping communities in complex networks with multimodal optimization
The analysis of complex networks is an important research topic that helps us understand the underlying behavior of complex systems and the interactions of their components. One particularly relevant analysis is the detection of communities formed by such interactions. Most community detection algorithms work as optimization tools that minimize a given quality function, while assuming that each node belongs to a single community. However, most complex networks contain nodes that belong to two or more communities, which are called bridges. The identification of bridges is crucial to several problems, as they often play important roles in the system described by the network. By exploiting the multimodality of quality functions, it is possible to obtain distinct optimal communities where, in each solution, each bridge node belongs to a distinct community. This paper proposes a technique that tries to identify a set of (possibly) overlapping communities by combining diverse solutions contained in a pool, which correspond to disjoint community partitions of a given network. To obtain the pool of partitions, an adapted version of the immune-inspired algorithm named cob-aiNet[C] was adopted here. The proposed methodology was applied to four real-world social networks and the obtained results were compared to those reported in the literature. The comparisons have shown that the proposed approach is competitive and even capable of overcoming the best results reported for some of the problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信