残差网络在时间序列分类中的敏感性研究

Sahar Alwadei, Moataz A. Ahmed
{"title":"残差网络在时间序列分类中的敏感性研究","authors":"Sahar Alwadei, Moataz A. Ahmed","doi":"10.1109/caida51941.2021.9425060","DOIUrl":null,"url":null,"abstract":"Time series classification (TCS) is an essential task in many applications. There have been different models proposed for TSC where deep learning models proved to be an excellent option. However, deep learning models' performance is generally known to be highly affected by the settings of their architectural design decisions and values of corresponding hyperparameters. In this research, we study the impact of such decisions and values on Residual Neural Networks (ResNets), a leading deep learning model for TSC. The study considered four factors to be investigated those are the model’s depth and width besides learning and dropout rates. The interplay between the characteristics of time series data and these factors has been looked at as well. A set of designed variants of the model was analyzed statistically, which led to recommend specific settings while building the model. Experimental results show that learning and dropout rates influence the model’s performance the most, while deeper and wider networks did not enhance the performance despite the extended cost of training.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sensitivity of Residual Networks for Time Series Classification\",\"authors\":\"Sahar Alwadei, Moataz A. Ahmed\",\"doi\":\"10.1109/caida51941.2021.9425060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series classification (TCS) is an essential task in many applications. There have been different models proposed for TSC where deep learning models proved to be an excellent option. However, deep learning models' performance is generally known to be highly affected by the settings of their architectural design decisions and values of corresponding hyperparameters. In this research, we study the impact of such decisions and values on Residual Neural Networks (ResNets), a leading deep learning model for TSC. The study considered four factors to be investigated those are the model’s depth and width besides learning and dropout rates. The interplay between the characteristics of time series data and these factors has been looked at as well. A set of designed variants of the model was analyzed statistically, which led to recommend specific settings while building the model. Experimental results show that learning and dropout rates influence the model’s performance the most, while deeper and wider networks did not enhance the performance despite the extended cost of training.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/caida51941.2021.9425060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/caida51941.2021.9425060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列分类(TCS)在许多应用中都是一项重要的任务。对于TSC已经提出了不同的模型,其中深度学习模型被证明是一个很好的选择。然而,深度学习模型的性能通常受到其架构设计决策设置和相应超参数值的高度影响。在这项研究中,我们研究了这些决策和价值观对残差神经网络(ResNets)的影响,这是TSC的一种领先的深度学习模型。该研究考虑了四个因素,即模型的深度和宽度,以及学习和辍学率。时间序列数据的特征与这些因素之间的相互作用也被研究过。对模型的一组设计变量进行统计分析,从而在构建模型时推荐特定的设置。实验结果表明,学习率和辍学率对模型的性能影响最大,而深度和广度的网络虽然增加了训练成本,但并没有提高模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sensitivity of Residual Networks for Time Series Classification
Time series classification (TCS) is an essential task in many applications. There have been different models proposed for TSC where deep learning models proved to be an excellent option. However, deep learning models' performance is generally known to be highly affected by the settings of their architectural design decisions and values of corresponding hyperparameters. In this research, we study the impact of such decisions and values on Residual Neural Networks (ResNets), a leading deep learning model for TSC. The study considered four factors to be investigated those are the model’s depth and width besides learning and dropout rates. The interplay between the characteristics of time series data and these factors has been looked at as well. A set of designed variants of the model was analyzed statistically, which led to recommend specific settings while building the model. Experimental results show that learning and dropout rates influence the model’s performance the most, while deeper and wider networks did not enhance the performance despite the extended cost of training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信