{"title":"遗传算法在GPU CUDA平台上的加速","authors":"D. Janssen, Alan Wee-Chung Liew","doi":"10.1109/PDCAT46702.2019.00047","DOIUrl":null,"url":null,"abstract":"When a deterministic search approach is too costly, such as for non-deterministic polynomial-hard problems, finding near-optimal solutions with approximation algorithms, such as the genetic algorithm, is the only practical approach to reduce the execution time. In this paper, we exploit the capability of graphics processing units (GPU), specifically Nvidia's CUDA platform, to accelerate the genetic algorithm by modifying the evolutionary operations to fit the hardware architecture. This has allowed us to achieve significant computational speedups compared to the non-GPU counterparts.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acceleration of Genetic Algorithm on GPU CUDA Platform\",\"authors\":\"D. Janssen, Alan Wee-Chung Liew\",\"doi\":\"10.1109/PDCAT46702.2019.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a deterministic search approach is too costly, such as for non-deterministic polynomial-hard problems, finding near-optimal solutions with approximation algorithms, such as the genetic algorithm, is the only practical approach to reduce the execution time. In this paper, we exploit the capability of graphics processing units (GPU), specifically Nvidia's CUDA platform, to accelerate the genetic algorithm by modifying the evolutionary operations to fit the hardware architecture. This has allowed us to achieve significant computational speedups compared to the non-GPU counterparts.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acceleration of Genetic Algorithm on GPU CUDA Platform
When a deterministic search approach is too costly, such as for non-deterministic polynomial-hard problems, finding near-optimal solutions with approximation algorithms, such as the genetic algorithm, is the only practical approach to reduce the execution time. In this paper, we exploit the capability of graphics processing units (GPU), specifically Nvidia's CUDA platform, to accelerate the genetic algorithm by modifying the evolutionary operations to fit the hardware architecture. This has allowed us to achieve significant computational speedups compared to the non-GPU counterparts.