高维基因数据的统计分析

Yichuan Zhao, Yue Zhou
{"title":"高维基因数据的统计分析","authors":"Yichuan Zhao, Yue Zhou","doi":"10.1109/GRC.2006.1635850","DOIUrl":null,"url":null,"abstract":"We consider the problem of constructing an additive risk model based on the right censored survival data with high dimensional covariates to predict the survival times of the cancer patients. We apply Partial Least Squares to reduce the dimension of the covariates and get the latent variables, say, components; these components can be used as new regressors to fit the extensional additive risk model. Also the time dependent AUC curve (area under the receiver operating characteristic (ROC) curve) is employed to assess how well the model predicts the survival time. This approach is illustrated by analysis of breast cancer dataset.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical analysis of high dimensional gene data\",\"authors\":\"Yichuan Zhao, Yue Zhou\",\"doi\":\"10.1109/GRC.2006.1635850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of constructing an additive risk model based on the right censored survival data with high dimensional covariates to predict the survival times of the cancer patients. We apply Partial Least Squares to reduce the dimension of the covariates and get the latent variables, say, components; these components can be used as new regressors to fit the extensional additive risk model. Also the time dependent AUC curve (area under the receiver operating characteristic (ROC) curve) is employed to assess how well the model predicts the survival time. This approach is illustrated by analysis of breast cancer dataset.\",\"PeriodicalId\":400997,\"journal\":{\"name\":\"2006 IEEE International Conference on Granular Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2006.1635850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了基于高维协变量的正确删减生存数据构建加性风险模型的问题,以预测癌症患者的生存时间。我们应用偏最小二乘来降低协变量的维数,得到潜在变量,比如分量;这些分量可以作为新的回归量来拟合外延加性风险模型。此外,时间相关的AUC曲线(受试者工作特征(ROC)曲线下的面积)用于评估模型预测生存时间的效果。该方法通过对乳腺癌数据集的分析得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical analysis of high dimensional gene data
We consider the problem of constructing an additive risk model based on the right censored survival data with high dimensional covariates to predict the survival times of the cancer patients. We apply Partial Least Squares to reduce the dimension of the covariates and get the latent variables, say, components; these components can be used as new regressors to fit the extensional additive risk model. Also the time dependent AUC curve (area under the receiver operating characteristic (ROC) curve) is employed to assess how well the model predicts the survival time. This approach is illustrated by analysis of breast cancer dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信