一种快速QR/频域RLS自适应滤波器

J. Cioffi
{"title":"一种快速QR/频域RLS自适应滤波器","authors":"J. Cioffi","doi":"10.1109/ICASSP.1987.1169610","DOIUrl":null,"url":null,"abstract":"There has been considerable recent interest in QR factorization for recursive solution to the least-squares adaptive-filtering problem, mainly because of the good numerical properties of QR factorizations. Early work by Gentleman and Kung (1981) and McWhirter (1983) has produced triangular systolic arrays of N2/2 processors that solve the Recursive Least Squares (RLS) adaptive-filtering problem (where N is the size of the adaptive filter). Here, we introduce a more computationally efficient solution to the QR RLS problem that requires only O(N) computations per time update, when the input has the usual shift-invariant property. Thus, computation and implementation requirements are reduced by an order of magnitude. The new algorithms are based on a structure that is neither a transversal filter nor a lattice, but can be best characterized by a functionally equivalent set of parameters that represent the time-varying \"least-squares frequency transforms\" of the input sequences. Numerical stability can be insured by implementing computations as 2 × 2 orthogonal (Givens) rotations.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A fast QR/Frequency-domain RLS adaptive filter\",\"authors\":\"J. Cioffi\",\"doi\":\"10.1109/ICASSP.1987.1169610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been considerable recent interest in QR factorization for recursive solution to the least-squares adaptive-filtering problem, mainly because of the good numerical properties of QR factorizations. Early work by Gentleman and Kung (1981) and McWhirter (1983) has produced triangular systolic arrays of N2/2 processors that solve the Recursive Least Squares (RLS) adaptive-filtering problem (where N is the size of the adaptive filter). Here, we introduce a more computationally efficient solution to the QR RLS problem that requires only O(N) computations per time update, when the input has the usual shift-invariant property. Thus, computation and implementation requirements are reduced by an order of magnitude. The new algorithms are based on a structure that is neither a transversal filter nor a lattice, but can be best characterized by a functionally equivalent set of parameters that represent the time-varying \\\"least-squares frequency transforms\\\" of the input sequences. Numerical stability can be insured by implementing computations as 2 × 2 orthogonal (Givens) rotations.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

近年来,由于QR分解具有良好的数值性质,人们对最小二乘自适应滤波问题递归解的QR分解产生了相当大的兴趣。Gentleman和Kung(1981)以及McWhirter(1983)的早期工作已经产生了N2/2处理器的三角形收缩阵列,解决了递归最小二乘(RLS)自适应滤波问题(其中N是自适应滤波器的大小)。在这里,我们引入了一个计算效率更高的QR RLS问题的解决方案,当输入具有通常的移位不变性时,每次更新只需要O(N)次计算。因此,计算和实现需求减少了一个数量级。新算法基于一种结构,既不是横向滤波器也不是晶格,但可以用一组功能等效的参数来最好地表征,这些参数表示输入序列的时变“最小二乘频率变换”。数值稳定性可以通过实现2 × 2正交(给定)旋转的计算来保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast QR/Frequency-domain RLS adaptive filter
There has been considerable recent interest in QR factorization for recursive solution to the least-squares adaptive-filtering problem, mainly because of the good numerical properties of QR factorizations. Early work by Gentleman and Kung (1981) and McWhirter (1983) has produced triangular systolic arrays of N2/2 processors that solve the Recursive Least Squares (RLS) adaptive-filtering problem (where N is the size of the adaptive filter). Here, we introduce a more computationally efficient solution to the QR RLS problem that requires only O(N) computations per time update, when the input has the usual shift-invariant property. Thus, computation and implementation requirements are reduced by an order of magnitude. The new algorithms are based on a structure that is neither a transversal filter nor a lattice, but can be best characterized by a functionally equivalent set of parameters that represent the time-varying "least-squares frequency transforms" of the input sequences. Numerical stability can be insured by implementing computations as 2 × 2 orthogonal (Givens) rotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信