稀疏训练数据下基于特征的纹理分类器与卷积神经网络的性能比较

Ryan Dellana, K. Roy
{"title":"稀疏训练数据下基于特征的纹理分类器与卷积神经网络的性能比较","authors":"Ryan Dellana, K. Roy","doi":"10.1109/SECON.2017.7925325","DOIUrl":null,"url":null,"abstract":"In this work, we compare the performance of three local-feature-based texture classifiers and a Convolutional Neural Network (CNN) at face recognition with sparse training data. The texture-based classifiers use Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Scale Invariant Feature Transform (SIFT), respectively. The CNN uses six convolutional layers, two pooling layers, two fully connected layers, and outputs a softmax probability distribution over the classes. The dataset contains 100 classes with five samples each, and is partitioned so there is only one training sample per class. Under these conditions, we find that all three feature-based approaches significantly outperform the CNN, with the HOG-based approach showing especially strong performance.","PeriodicalId":368197,"journal":{"name":"SoutheastCon 2017","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance of feature-based texture classifiers versus Convolutional Neural Network under sparse training data\",\"authors\":\"Ryan Dellana, K. Roy\",\"doi\":\"10.1109/SECON.2017.7925325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we compare the performance of three local-feature-based texture classifiers and a Convolutional Neural Network (CNN) at face recognition with sparse training data. The texture-based classifiers use Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Scale Invariant Feature Transform (SIFT), respectively. The CNN uses six convolutional layers, two pooling layers, two fully connected layers, and outputs a softmax probability distribution over the classes. The dataset contains 100 classes with five samples each, and is partitioned so there is only one training sample per class. Under these conditions, we find that all three feature-based approaches significantly outperform the CNN, with the HOG-based approach showing especially strong performance.\",\"PeriodicalId\":368197,\"journal\":{\"name\":\"SoutheastCon 2017\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoutheastCon 2017\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2017.7925325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoutheastCon 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2017.7925325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们比较了三种基于局部特征的纹理分类器和卷积神经网络(CNN)在具有稀疏训练数据的人脸识别中的性能。基于纹理的分类器分别使用定向梯度直方图(HOG)、局部二值模式(LBP)和尺度不变特征变换(SIFT)。CNN使用六个卷积层,两个池化层,两个完全连接层,并在类上输出一个softmax概率分布。数据集包含100个类,每个类有5个样本,并且被划分为每个类只有一个训练样本。在这些条件下,我们发现所有三种基于特征的方法都明显优于CNN,其中基于hog的方法表现出特别强的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of feature-based texture classifiers versus Convolutional Neural Network under sparse training data
In this work, we compare the performance of three local-feature-based texture classifiers and a Convolutional Neural Network (CNN) at face recognition with sparse training data. The texture-based classifiers use Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Scale Invariant Feature Transform (SIFT), respectively. The CNN uses six convolutional layers, two pooling layers, two fully connected layers, and outputs a softmax probability distribution over the classes. The dataset contains 100 classes with five samples each, and is partitioned so there is only one training sample per class. Under these conditions, we find that all three feature-based approaches significantly outperform the CNN, with the HOG-based approach showing especially strong performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信