简短公告:认证乘法权值更新:验证学习无悔

Alexander Bagnall, S. Merten, Gordon Stewart
{"title":"简短公告:认证乘法权值更新:验证学习无悔","authors":"Alexander Bagnall, S. Merten, Gordon Stewart","doi":"10.1145/3087801.3087852","DOIUrl":null,"url":null,"abstract":"The Multiplicative Weights Update method (MWU) is a simple yet powerful algorithm for learning linear classifiers, for ensemble learning a la boosting, for approximately solving linear and semidefinite systems, for computing approximate solutions to multicommodity flow problems, and for online convex optimization, among other applications. In this brief announcement, we apply techniques from interactive theorem proving to define and prove correct the first formally verified implementation of MWU (specifically, we show that our MWU is no regret). Our primary application -- and one justification of the relevance of our work to the PODC community -- is to verified multi-agent systems, such as distributed multi-agent network flow and load balancing games, for which verified MWU provides a convenient method for distributed computation of approximate Coarse Correlated Equilibria.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brief Announcement: Certified Multiplicative Weights Update: Verified Learning Without Regret\",\"authors\":\"Alexander Bagnall, S. Merten, Gordon Stewart\",\"doi\":\"10.1145/3087801.3087852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Multiplicative Weights Update method (MWU) is a simple yet powerful algorithm for learning linear classifiers, for ensemble learning a la boosting, for approximately solving linear and semidefinite systems, for computing approximate solutions to multicommodity flow problems, and for online convex optimization, among other applications. In this brief announcement, we apply techniques from interactive theorem proving to define and prove correct the first formally verified implementation of MWU (specifically, we show that our MWU is no regret). Our primary application -- and one justification of the relevance of our work to the PODC community -- is to verified multi-agent systems, such as distributed multi-agent network flow and load balancing games, for which verified MWU provides a convenient method for distributed computation of approximate Coarse Correlated Equilibria.\",\"PeriodicalId\":324970,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087801.3087852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

乘法加权更新方法(MWU)是一种简单而强大的算法,用于学习线性分类器,用于集成学习和增强,用于近似求解线性和半定系统,用于计算多商品流问题的近似解,以及用于在线凸优化等应用。在这个简短的声明中,我们应用交互式定理证明的技术来定义和证明MWU的第一个正式验证的实现是正确的(具体来说,我们表明我们的MWU是没有遗憾的)。我们的主要应用——以及我们的工作与PODC社区相关的一个理由——是验证多智能体系统,例如分布式多智能体网络流和负载平衡游戏,为此验证MWU为近似粗相关均衡的分布式计算提供了一种方便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief Announcement: Certified Multiplicative Weights Update: Verified Learning Without Regret
The Multiplicative Weights Update method (MWU) is a simple yet powerful algorithm for learning linear classifiers, for ensemble learning a la boosting, for approximately solving linear and semidefinite systems, for computing approximate solutions to multicommodity flow problems, and for online convex optimization, among other applications. In this brief announcement, we apply techniques from interactive theorem proving to define and prove correct the first formally verified implementation of MWU (specifically, we show that our MWU is no regret). Our primary application -- and one justification of the relevance of our work to the PODC community -- is to verified multi-agent systems, such as distributed multi-agent network flow and load balancing games, for which verified MWU provides a convenient method for distributed computation of approximate Coarse Correlated Equilibria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信