启动RISC-V MPSoC的弹性系统设计

Antti Nurmi, Antti Rautakoura, Henri Lunnikivi, Timo D. Hämäläinen
{"title":"启动RISC-V MPSoC的弹性系统设计","authors":"Antti Nurmi, Antti Rautakoura, Henri Lunnikivi, Timo D. Hämäläinen","doi":"10.1109/DSD57027.2022.00039","DOIUrl":null,"url":null,"abstract":"This paper presents a highly resilient boot process design for Ballast, a new RISC- V based multiprocessor system-on-chip (SoC). An open source RISC- V SoC was adapted as a bootstrap processor and customized to meet our requirement for guaranteed chip wake-up. We outline the characteristic challenges of implementing a large program into a read-only memory (ROM) used for booting and propose generally applica-ble workflows to verify the boot process for application specific integrated circuit (ASIC) synthesis. We implemented four distinct boot modes. Two modes that load a software bootloader autonomously from an SD card are implemented for a secure digital input output (SDIO) interface and for a serial peripheral interface (SPI), respectively. Another SDIO based mode allows for direct program execution from external memory, while the last mode is based on usage of a RISC- V debug module. The boot process was verified with instruction set simulation, register transfer level simulation, gate-level simulation and field-programmable gate array prototyping. We received the fabricated ASIC samples and were able to successfully boot the chip via all boot modes on our custom circuit board.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Resilient System Design to Boot a RISC-V MPSoC\",\"authors\":\"Antti Nurmi, Antti Rautakoura, Henri Lunnikivi, Timo D. Hämäläinen\",\"doi\":\"10.1109/DSD57027.2022.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a highly resilient boot process design for Ballast, a new RISC- V based multiprocessor system-on-chip (SoC). An open source RISC- V SoC was adapted as a bootstrap processor and customized to meet our requirement for guaranteed chip wake-up. We outline the characteristic challenges of implementing a large program into a read-only memory (ROM) used for booting and propose generally applica-ble workflows to verify the boot process for application specific integrated circuit (ASIC) synthesis. We implemented four distinct boot modes. Two modes that load a software bootloader autonomously from an SD card are implemented for a secure digital input output (SDIO) interface and for a serial peripheral interface (SPI), respectively. Another SDIO based mode allows for direct program execution from external memory, while the last mode is based on usage of a RISC- V debug module. The boot process was verified with instruction set simulation, register transfer level simulation, gate-level simulation and field-programmable gate array prototyping. We received the fabricated ASIC samples and were able to successfully boot the chip via all boot modes on our custom circuit board.\",\"PeriodicalId\":211723,\"journal\":{\"name\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD57027.2022.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于RISC- V的多处理器片上系统(SoC)的高弹性启动过程设计。一个开源的RISC- V SoC被改编为一个引导处理器,并定制以满足我们对保证芯片唤醒的要求。我们概述了将大型程序实现到用于启动的只读存储器(ROM)中的特征挑战,并提出了一般适用的工作流程来验证特定应用集成电路(ASIC)合成的启动过程。我们实现了四种不同的引导模式。分别为安全数字输入输出(SDIO)接口和串行外设接口(SPI)实现了从SD卡自动加载软件引导程序的两种模式。另一种基于SDIO的模式允许从外部存储器直接执行程序,而最后一种模式是基于使用RISC- V调试模块。通过指令集仿真、寄存器传输级仿真、门级仿真和现场可编程门阵列原型验证了启动过程。我们收到了制造的ASIC样品,并能够通过我们定制电路板上的所有启动模式成功启动芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Resilient System Design to Boot a RISC-V MPSoC
This paper presents a highly resilient boot process design for Ballast, a new RISC- V based multiprocessor system-on-chip (SoC). An open source RISC- V SoC was adapted as a bootstrap processor and customized to meet our requirement for guaranteed chip wake-up. We outline the characteristic challenges of implementing a large program into a read-only memory (ROM) used for booting and propose generally applica-ble workflows to verify the boot process for application specific integrated circuit (ASIC) synthesis. We implemented four distinct boot modes. Two modes that load a software bootloader autonomously from an SD card are implemented for a secure digital input output (SDIO) interface and for a serial peripheral interface (SPI), respectively. Another SDIO based mode allows for direct program execution from external memory, while the last mode is based on usage of a RISC- V debug module. The boot process was verified with instruction set simulation, register transfer level simulation, gate-level simulation and field-programmable gate array prototyping. We received the fabricated ASIC samples and were able to successfully boot the chip via all boot modes on our custom circuit board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信