利用主从推理标注、大小写语法和警报语义网络提取攻击知识

W. Yan, E. Hou, N. Ansari
{"title":"利用主从推理标注、大小写语法和警报语义网络提取攻击知识","authors":"W. Yan, E. Hou, N. Ansari","doi":"10.1109/LCN.2004.57","DOIUrl":null,"url":null,"abstract":"The increasing use of intrusion detection systems and a relatively high false alarm rate can lead to a huge volume of alerts. This makes it very difficult for security administrators to analyze and detect network attacks. Our solution for this problem is to make the alerts machine understandable. We propose a novel way to convert the raw alerts into machine understandable uniform streams, correlate the streams, and extract the attack scenario knowledge. The modified case grammar principal-subordinate consequence tagging case grammar and the 2-atom alert semantic network are used to generate the attack scenario classes. Alert mutual information is also applied to calculate the alert semantic context window size. Based on the alert context, the attack scenario instances are extracted and the attack scenario descriptions are forwarded to the security administrator.","PeriodicalId":366183,"journal":{"name":"29th Annual IEEE International Conference on Local Computer Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Extracting attack knowledge using principal-subordinate consequence tagging case grammar and alerts semantic networks\",\"authors\":\"W. Yan, E. Hou, N. Ansari\",\"doi\":\"10.1109/LCN.2004.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing use of intrusion detection systems and a relatively high false alarm rate can lead to a huge volume of alerts. This makes it very difficult for security administrators to analyze and detect network attacks. Our solution for this problem is to make the alerts machine understandable. We propose a novel way to convert the raw alerts into machine understandable uniform streams, correlate the streams, and extract the attack scenario knowledge. The modified case grammar principal-subordinate consequence tagging case grammar and the 2-atom alert semantic network are used to generate the attack scenario classes. Alert mutual information is also applied to calculate the alert semantic context window size. Based on the alert context, the attack scenario instances are extracted and the attack scenario descriptions are forwarded to the security administrator.\",\"PeriodicalId\":366183,\"journal\":{\"name\":\"29th Annual IEEE International Conference on Local Computer Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th Annual IEEE International Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2004.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Annual IEEE International Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2004.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

越来越多的入侵检测系统的使用和相对较高的虚警率可能导致大量的警报。这使得安全管理员很难分析和检测网络攻击。我们对这个问题的解决方案是使警报机器易于理解。我们提出了一种新的方法,将原始警报转换为机器可理解的统一流,将这些流关联起来,并提取攻击场景知识。采用改进的格语法主从推理标注格语法和二原子警报语义网络生成攻击场景类。警报互信息也用于计算警报语义上下文窗口大小。根据告警上下文提取攻击场景实例,并将攻击场景描述转发给安全管理员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting attack knowledge using principal-subordinate consequence tagging case grammar and alerts semantic networks
The increasing use of intrusion detection systems and a relatively high false alarm rate can lead to a huge volume of alerts. This makes it very difficult for security administrators to analyze and detect network attacks. Our solution for this problem is to make the alerts machine understandable. We propose a novel way to convert the raw alerts into machine understandable uniform streams, correlate the streams, and extract the attack scenario knowledge. The modified case grammar principal-subordinate consequence tagging case grammar and the 2-atom alert semantic network are used to generate the attack scenario classes. Alert mutual information is also applied to calculate the alert semantic context window size. Based on the alert context, the attack scenario instances are extracted and the attack scenario descriptions are forwarded to the security administrator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信