NIST在修订SI中的质量校准

P. Abbott
{"title":"NIST在修订SI中的质量校准","authors":"P. Abbott","doi":"10.51843/wsproceedings.2018.09","DOIUrl":null,"url":null,"abstract":"The unit of mass has been realized by the International Prototype Kilogram (IPK) for over 130 years. This will change very soon. The revision of the International System of Units (SI) that will take effect on May 20, 2019 will fundamentally change the way the United States mass scale is realized by NIST at the one kilogram level and below. For example, below 50 mg, very precise measurements of capacitance gradient by the NIST Electrostatic Force Balance (EFB) will extend the lower end of the NIST mass scale to 100 micrograms or less and improve uncertainties by a factor of ten over what they are now, all while eliminating laborious work-downs from one kilogram standards. Between 100 g and one kilogram, the NIST-4 Kibble balance will realize mass from quantum-based electrical and mechanical power measurements. Mass transfer between the vacuum environment of the Kibble balance and the mass metrology performed in laboratory air pressure will be accomplished by a unique-to-NIST magnetic suspension-based mass comparator that will allow a test mass to be directly calibrated against an artifact whose mass has been determined by the Kibble balance. When considered in its entirety, the NIST mass scale under the revised SI will be easier to realize, easier to maintain, and have equal or smaller uncertainties that the mass scale that is traceable to the IPK. This presentation will illustrate how the NIST mass scale at one kilogram and below is constructed using the new instruments described above. An uncertainty budget covering the range from 1 kilogram to 100 micrograms will be given and the techniques that are used for mass dissemination in this range will be described.","PeriodicalId":120844,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mass Calibration at NIST in the Revised SI\",\"authors\":\"P. Abbott\",\"doi\":\"10.51843/wsproceedings.2018.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unit of mass has been realized by the International Prototype Kilogram (IPK) for over 130 years. This will change very soon. The revision of the International System of Units (SI) that will take effect on May 20, 2019 will fundamentally change the way the United States mass scale is realized by NIST at the one kilogram level and below. For example, below 50 mg, very precise measurements of capacitance gradient by the NIST Electrostatic Force Balance (EFB) will extend the lower end of the NIST mass scale to 100 micrograms or less and improve uncertainties by a factor of ten over what they are now, all while eliminating laborious work-downs from one kilogram standards. Between 100 g and one kilogram, the NIST-4 Kibble balance will realize mass from quantum-based electrical and mechanical power measurements. Mass transfer between the vacuum environment of the Kibble balance and the mass metrology performed in laboratory air pressure will be accomplished by a unique-to-NIST magnetic suspension-based mass comparator that will allow a test mass to be directly calibrated against an artifact whose mass has been determined by the Kibble balance. When considered in its entirety, the NIST mass scale under the revised SI will be easier to realize, easier to maintain, and have equal or smaller uncertainties that the mass scale that is traceable to the IPK. This presentation will illustrate how the NIST mass scale at one kilogram and below is constructed using the new instruments described above. An uncertainty budget covering the range from 1 kilogram to 100 micrograms will be given and the techniques that are used for mass dissemination in this range will be described.\",\"PeriodicalId\":120844,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2018\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2018.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2018.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

质量单位由国际千克原型(IPK)实现已有130多年的历史。这种情况很快就会改变。将于2019年5月20日生效的国际单位制(SI)修订将从根本上改变NIST在1公斤及以下级别实现美国质量尺度的方式。例如,在50毫克以下,通过NIST静电力平衡(EFB)对电容梯度的非常精确的测量将把NIST质量尺度的下限扩展到100微克或更小,并将不确定性提高到现在的十倍,同时消除了从一公斤标准开始的费力的工作。在100克到1千克之间,NIST-4基布尔天平将通过基于量子的电力和机械功率测量来实现质量。在基布尔天平的真空环境和在实验室气压下进行的质量计量之间的质量传递将由一个独特的nist基于磁悬浮的质量比较器完成,该比较器将允许测试质量直接与由基布尔天平确定质量的工件进行校准。从整体上考虑,修订SI下的NIST质量尺度将更容易实现,更容易维护,并且与可追溯到IPK的质量尺度具有相同或更小的不确定性。本报告将说明如何使用上述新仪器构建1公斤及以下的NIST质量尺度。将给出涵盖1公斤至100微克范围的不确定度预算,并将描述用于在该范围内进行大规模传播的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass Calibration at NIST in the Revised SI
The unit of mass has been realized by the International Prototype Kilogram (IPK) for over 130 years. This will change very soon. The revision of the International System of Units (SI) that will take effect on May 20, 2019 will fundamentally change the way the United States mass scale is realized by NIST at the one kilogram level and below. For example, below 50 mg, very precise measurements of capacitance gradient by the NIST Electrostatic Force Balance (EFB) will extend the lower end of the NIST mass scale to 100 micrograms or less and improve uncertainties by a factor of ten over what they are now, all while eliminating laborious work-downs from one kilogram standards. Between 100 g and one kilogram, the NIST-4 Kibble balance will realize mass from quantum-based electrical and mechanical power measurements. Mass transfer between the vacuum environment of the Kibble balance and the mass metrology performed in laboratory air pressure will be accomplished by a unique-to-NIST magnetic suspension-based mass comparator that will allow a test mass to be directly calibrated against an artifact whose mass has been determined by the Kibble balance. When considered in its entirety, the NIST mass scale under the revised SI will be easier to realize, easier to maintain, and have equal or smaller uncertainties that the mass scale that is traceable to the IPK. This presentation will illustrate how the NIST mass scale at one kilogram and below is constructed using the new instruments described above. An uncertainty budget covering the range from 1 kilogram to 100 micrograms will be given and the techniques that are used for mass dissemination in this range will be described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信