一种新的基于遗传算法的约束比赛选择多准则优化方法

O. Andrzej, K. Stanislaw
{"title":"一种新的基于遗传算法的约束比赛选择多准则优化方法","authors":"O. Andrzej, K. Stanislaw","doi":"10.1109/CEC.2000.870338","DOIUrl":null,"url":null,"abstract":"A new genetic algorithm based method for solving nonlinear multicriterion optimization problems is described. The method does not use a fitness value as a measure, as a genetic algorithm uses to create the population of chromosomes for the next generation. The proposed method uses tournament selection which does not require evaluation of fitness values in order to create a new population of chromosomes for the next generation. The tournament is arranged such that objective functions are evaluated only for feasible solutions. After a detailed description of the method two examples are presented and the results are compared with those obtained using other methods. This comparison shows the effectiveness of the proposed method.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A new constraint tournament selection method for multicriteria optimization using genetic algorithm\",\"authors\":\"O. Andrzej, K. Stanislaw\",\"doi\":\"10.1109/CEC.2000.870338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new genetic algorithm based method for solving nonlinear multicriterion optimization problems is described. The method does not use a fitness value as a measure, as a genetic algorithm uses to create the population of chromosomes for the next generation. The proposed method uses tournament selection which does not require evaluation of fitness values in order to create a new population of chromosomes for the next generation. The tournament is arranged such that objective functions are evaluated only for feasible solutions. After a detailed description of the method two examples are presented and the results are compared with those obtained using other methods. This comparison shows the effectiveness of the proposed method.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种基于遗传算法求解非线性多准则优化问题的新方法。该方法不使用适应度值作为衡量标准,而遗传算法则使用适应度值来为下一代创建染色体种群。提出的方法采用不需要评估适应度值的锦标赛选择,以便为下一代创建新的染色体群体。比赛是这样安排的,目标函数只评估可行的解决方案。在详细介绍了该方法后,给出了两个算例,并与其他方法的计算结果进行了比较。通过比较表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new constraint tournament selection method for multicriteria optimization using genetic algorithm
A new genetic algorithm based method for solving nonlinear multicriterion optimization problems is described. The method does not use a fitness value as a measure, as a genetic algorithm uses to create the population of chromosomes for the next generation. The proposed method uses tournament selection which does not require evaluation of fitness values in order to create a new population of chromosomes for the next generation. The tournament is arranged such that objective functions are evaluated only for feasible solutions. After a detailed description of the method two examples are presented and the results are compared with those obtained using other methods. This comparison shows the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信