动态场景中运动目标检测的精确背景建模

Salma Kammoun Jarraya, Mohamed Hammami, H. Ben-Abdallah
{"title":"动态场景中运动目标检测的精确背景建模","authors":"Salma Kammoun Jarraya, Mohamed Hammami, H. Ben-Abdallah","doi":"10.1109/DICTA.2010.18","DOIUrl":null,"url":null,"abstract":"Fast and accurate foreground detection in video sequences is the first step in many computer vision applications. In this paper, we propose a new method for background modeling that operates in color and gray spaces and that manages the entropy information to obtain the pixel state card. Our method is recursive and does not require a training period to handle various problems when classify pixels into either foreground or background. First, it starts by analyzing the pixel state card to build a dynamic matrix. This latter is used to selectively update background model. Secondly, our method eliminates noise and holes from the moving areas, removes uninteresting moving regions and refines the shape of foregrounds. A comparative study through quantitative and qualitative evaluations shows that our method can detect foreground efficiently and accurately in videos even in the presence of various problems including sudden and gradual illumination changes, shaking camera, background component changes, ghost, and foreground speed.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Accurate Background Modeling for Moving Object Detection in a Dynamic Scene\",\"authors\":\"Salma Kammoun Jarraya, Mohamed Hammami, H. Ben-Abdallah\",\"doi\":\"10.1109/DICTA.2010.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate foreground detection in video sequences is the first step in many computer vision applications. In this paper, we propose a new method for background modeling that operates in color and gray spaces and that manages the entropy information to obtain the pixel state card. Our method is recursive and does not require a training period to handle various problems when classify pixels into either foreground or background. First, it starts by analyzing the pixel state card to build a dynamic matrix. This latter is used to selectively update background model. Secondly, our method eliminates noise and holes from the moving areas, removes uninteresting moving regions and refines the shape of foregrounds. A comparative study through quantitative and qualitative evaluations shows that our method can detect foreground efficiently and accurately in videos even in the presence of various problems including sudden and gradual illumination changes, shaking camera, background component changes, ghost, and foreground speed.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在视频序列中快速准确的前景检测是许多计算机视觉应用的第一步。本文提出了一种新的背景建模方法,该方法在彩色和灰色空间中进行操作,并对熵信息进行管理以获得像素状态卡。我们的方法是递归的,并且在将像素分类为前景或背景时不需要一个训练周期来处理各种问题。首先对像素状态卡进行分析,建立动态矩阵。后者用于有选择地更新背景模型。其次,消除运动区域中的噪声和孔洞,去除无趣的运动区域,细化前景形状。通过定量评价和定性评价的对比研究表明,在视频中,即使存在突如其来的渐变照明变化、摄像机抖动、背景成分变化、鬼影、前景速度等各种问题,我们的方法也能高效准确地检测出前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Background Modeling for Moving Object Detection in a Dynamic Scene
Fast and accurate foreground detection in video sequences is the first step in many computer vision applications. In this paper, we propose a new method for background modeling that operates in color and gray spaces and that manages the entropy information to obtain the pixel state card. Our method is recursive and does not require a training period to handle various problems when classify pixels into either foreground or background. First, it starts by analyzing the pixel state card to build a dynamic matrix. This latter is used to selectively update background model. Secondly, our method eliminates noise and holes from the moving areas, removes uninteresting moving regions and refines the shape of foregrounds. A comparative study through quantitative and qualitative evaluations shows that our method can detect foreground efficiently and accurately in videos even in the presence of various problems including sudden and gradual illumination changes, shaking camera, background component changes, ghost, and foreground speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信