Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen
{"title":"带噪声整形的有损网络低延迟预测编码的固定滞后平滑","authors":"Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen","doi":"10.1109/DCC.2010.33","DOIUrl":null,"url":null,"abstract":"We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fixed-Lag Smoothing for Low-Delay Predictive Coding with Noise Shaping for Lossy Networks\",\"authors\":\"Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen\",\"doi\":\"10.1109/DCC.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed-Lag Smoothing for Low-Delay Predictive Coding with Noise Shaping for Lossy Networks
We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.