{"title":"使用LARD对语言级数据竞争进行低级检测","authors":"Benjamin P. Wood, L. Ceze, D. Grossman","doi":"10.1145/2541940.2541955","DOIUrl":null,"url":null,"abstract":"Researchers have proposed always-on data-race exceptions as a way to avoid the ill effects of data races, but slow performance of accurate dynamic data-race detection remains a barrier to the adoption of always-on data-race exceptions. Proposals for accurate low-level (e.g., hardware) data-race detection have the potential to reduce this performance barrier. This paper explains why low-level data-race detectors are wrong for programs written in high-level languages (e.g., Java): they miss true data races and report false data races in these programs. To bring the benefits of low-level data-race detection to high-level languages, we design low-level abstractable race detection (LARD), an extension of the interface between low-level data-race detectors and run-time systems that enables accurate language-level data-race detection using low-level detection mechanisms. We implement accurate LARD data-race exception support for Java, coupling a modified Jikes RVM Java virtual machine and a simulated hardware race detector. We evaluate our detector's accuracy against an accurate dynamic Java data-race detector and other low-level race detectors without LARD, showing that naive accurate nlow-level data-race detectors suffer from many missed and false language-level races in practice, and that LARD prevents this inaccuracy.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Low-level detection of language-level data races with LARD\",\"authors\":\"Benjamin P. Wood, L. Ceze, D. Grossman\",\"doi\":\"10.1145/2541940.2541955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have proposed always-on data-race exceptions as a way to avoid the ill effects of data races, but slow performance of accurate dynamic data-race detection remains a barrier to the adoption of always-on data-race exceptions. Proposals for accurate low-level (e.g., hardware) data-race detection have the potential to reduce this performance barrier. This paper explains why low-level data-race detectors are wrong for programs written in high-level languages (e.g., Java): they miss true data races and report false data races in these programs. To bring the benefits of low-level data-race detection to high-level languages, we design low-level abstractable race detection (LARD), an extension of the interface between low-level data-race detectors and run-time systems that enables accurate language-level data-race detection using low-level detection mechanisms. We implement accurate LARD data-race exception support for Java, coupling a modified Jikes RVM Java virtual machine and a simulated hardware race detector. We evaluate our detector's accuracy against an accurate dynamic Java data-race detector and other low-level race detectors without LARD, showing that naive accurate nlow-level data-race detectors suffer from many missed and false language-level races in practice, and that LARD prevents this inaccuracy.\",\"PeriodicalId\":128805,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2541940.2541955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-level detection of language-level data races with LARD
Researchers have proposed always-on data-race exceptions as a way to avoid the ill effects of data races, but slow performance of accurate dynamic data-race detection remains a barrier to the adoption of always-on data-race exceptions. Proposals for accurate low-level (e.g., hardware) data-race detection have the potential to reduce this performance barrier. This paper explains why low-level data-race detectors are wrong for programs written in high-level languages (e.g., Java): they miss true data races and report false data races in these programs. To bring the benefits of low-level data-race detection to high-level languages, we design low-level abstractable race detection (LARD), an extension of the interface between low-level data-race detectors and run-time systems that enables accurate language-level data-race detection using low-level detection mechanisms. We implement accurate LARD data-race exception support for Java, coupling a modified Jikes RVM Java virtual machine and a simulated hardware race detector. We evaluate our detector's accuracy against an accurate dynamic Java data-race detector and other low-level race detectors without LARD, showing that naive accurate nlow-level data-race detectors suffer from many missed and false language-level races in practice, and that LARD prevents this inaccuracy.