支持dvfs的云数据中心虚拟机能耗建模

Jianzhou Mao, T. Bhattacharya, Xiaopu Peng, T. Cao, X. Qin
{"title":"支持dvfs的云数据中心虚拟机能耗建模","authors":"Jianzhou Mao, T. Bhattacharya, Xiaopu Peng, T. Cao, X. Qin","doi":"10.1109/IPCCC50635.2020.9391552","DOIUrl":null,"url":null,"abstract":"To cut back energy consumption of virtual-machine-powered data centers, we build an optimization model for virtual machines running in DVFS-enabled cloud data centers. With the model in place, cloud computing systems are equipped to keep track of dynamic power and static power of processors in virtual machines. Unlike existing dynamic voltage and frequency scaling schemes, our solution orchestrates frequency requirements rather than task execution times. The model makes it possible to obtain an optimal frequency ratio, which minimizes energy consumption of virtual machines. As a result, a data center’s energy efficiency is boosted by controlling CPU frequency to meet the optimal frequency ratio. We demonstrate a way of manipulating frequency ratios to pushing up energy efficiency without violating virtual machines’ frequency requirements. The experimental results unveil that our modeling approach offers a practical way of conserving the energy consumption of virtual machines running in data centers.","PeriodicalId":226034,"journal":{"name":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Energy Consumption of Virtual Machines in DVFS-Enabled Cloud Data Centers\",\"authors\":\"Jianzhou Mao, T. Bhattacharya, Xiaopu Peng, T. Cao, X. Qin\",\"doi\":\"10.1109/IPCCC50635.2020.9391552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To cut back energy consumption of virtual-machine-powered data centers, we build an optimization model for virtual machines running in DVFS-enabled cloud data centers. With the model in place, cloud computing systems are equipped to keep track of dynamic power and static power of processors in virtual machines. Unlike existing dynamic voltage and frequency scaling schemes, our solution orchestrates frequency requirements rather than task execution times. The model makes it possible to obtain an optimal frequency ratio, which minimizes energy consumption of virtual machines. As a result, a data center’s energy efficiency is boosted by controlling CPU frequency to meet the optimal frequency ratio. We demonstrate a way of manipulating frequency ratios to pushing up energy efficiency without violating virtual machines’ frequency requirements. The experimental results unveil that our modeling approach offers a practical way of conserving the energy consumption of virtual machines running in data centers.\",\"PeriodicalId\":226034,\"journal\":{\"name\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"volume\":\"599 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCCC50635.2020.9391552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCCC50635.2020.9391552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了减少虚拟机驱动的数据中心的能耗,我们为运行在支持dvfs的云数据中心中的虚拟机构建了一个优化模型。有了这个模型,云计算系统就可以跟踪虚拟机中处理器的动态功率和静态功率。与现有的动态电压和频率缩放方案不同,我们的解决方案协调频率要求,而不是任务执行时间。该模型可以获得最佳的频率比,从而使虚拟机的能耗最小化。因此,通过控制CPU频率以达到最佳频率比,可以提高数据中心的能源效率。我们演示了一种操纵频率比的方法,在不违反虚拟机频率要求的情况下提高能源效率。实验结果表明,我们的建模方法为在数据中心中运行的虚拟机提供了一种节约能耗的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Energy Consumption of Virtual Machines in DVFS-Enabled Cloud Data Centers
To cut back energy consumption of virtual-machine-powered data centers, we build an optimization model for virtual machines running in DVFS-enabled cloud data centers. With the model in place, cloud computing systems are equipped to keep track of dynamic power and static power of processors in virtual machines. Unlike existing dynamic voltage and frequency scaling schemes, our solution orchestrates frequency requirements rather than task execution times. The model makes it possible to obtain an optimal frequency ratio, which minimizes energy consumption of virtual machines. As a result, a data center’s energy efficiency is boosted by controlling CPU frequency to meet the optimal frequency ratio. We demonstrate a way of manipulating frequency ratios to pushing up energy efficiency without violating virtual machines’ frequency requirements. The experimental results unveil that our modeling approach offers a practical way of conserving the energy consumption of virtual machines running in data centers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信