Jinna Li, Haibin Yu, P. Zeng, Chao Liu, Qingling Zhang
{"title":"网络控制系统的采样率调度与最优控制协同设计","authors":"Jinna Li, Haibin Yu, P. Zeng, Chao Liu, Qingling Zhang","doi":"10.1109/ICMC.2014.7231546","DOIUrl":null,"url":null,"abstract":"A co-design of sampling rate scheduling and optimal control is investigated for networked control systems (NCSs) with transmission delay and packet loss. The basic purpose of proposed co-design scheme is to save substantial communication in both the sensor-to-controller channels and the controller-to-actuator channels, while guaranteeing optimal control performance of NCSs. Firstly, a switched systems model used to describe NCSs with sampling periods subject to a finite set is constructed. Secondly, guaranteed cost control is studied for NCSs in order to obtain two upper bounds of quadratic performance of systems under the two cases, (a): the worst network communication condition and the longest sampling period; (b): the best network communication condition and the shortest sampling period. After the above preparations have been done, a performance partition-based sampling rate scheduling algorithm is developed to perform co-design strategy for NCSs. Moreover, to calculate control performance in real-time approach and guarantee the asymptotically stable of systems, adaptive controllers are designed in terms of linear matrix inequality (LMI) technology. Finally, a numerical example and simulations are given to illustrate the effectiveness of the proposed method.","PeriodicalId":104511,"journal":{"name":"2014 International Conference on Mechatronics and Control (ICMC)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling rate scheduling and optimal control co-design for networked control systems\",\"authors\":\"Jinna Li, Haibin Yu, P. Zeng, Chao Liu, Qingling Zhang\",\"doi\":\"10.1109/ICMC.2014.7231546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A co-design of sampling rate scheduling and optimal control is investigated for networked control systems (NCSs) with transmission delay and packet loss. The basic purpose of proposed co-design scheme is to save substantial communication in both the sensor-to-controller channels and the controller-to-actuator channels, while guaranteeing optimal control performance of NCSs. Firstly, a switched systems model used to describe NCSs with sampling periods subject to a finite set is constructed. Secondly, guaranteed cost control is studied for NCSs in order to obtain two upper bounds of quadratic performance of systems under the two cases, (a): the worst network communication condition and the longest sampling period; (b): the best network communication condition and the shortest sampling period. After the above preparations have been done, a performance partition-based sampling rate scheduling algorithm is developed to perform co-design strategy for NCSs. Moreover, to calculate control performance in real-time approach and guarantee the asymptotically stable of systems, adaptive controllers are designed in terms of linear matrix inequality (LMI) technology. Finally, a numerical example and simulations are given to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":104511,\"journal\":{\"name\":\"2014 International Conference on Mechatronics and Control (ICMC)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Mechatronics and Control (ICMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMC.2014.7231546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mechatronics and Control (ICMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMC.2014.7231546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sampling rate scheduling and optimal control co-design for networked control systems
A co-design of sampling rate scheduling and optimal control is investigated for networked control systems (NCSs) with transmission delay and packet loss. The basic purpose of proposed co-design scheme is to save substantial communication in both the sensor-to-controller channels and the controller-to-actuator channels, while guaranteeing optimal control performance of NCSs. Firstly, a switched systems model used to describe NCSs with sampling periods subject to a finite set is constructed. Secondly, guaranteed cost control is studied for NCSs in order to obtain two upper bounds of quadratic performance of systems under the two cases, (a): the worst network communication condition and the longest sampling period; (b): the best network communication condition and the shortest sampling period. After the above preparations have been done, a performance partition-based sampling rate scheduling algorithm is developed to perform co-design strategy for NCSs. Moreover, to calculate control performance in real-time approach and guarantee the asymptotically stable of systems, adaptive controllers are designed in terms of linear matrix inequality (LMI) technology. Finally, a numerical example and simulations are given to illustrate the effectiveness of the proposed method.