溶液法制备磁电薄膜

M. Jain
{"title":"溶液法制备磁电薄膜","authors":"M. Jain","doi":"10.1117/12.2647655","DOIUrl":null,"url":null,"abstract":"Magnetoelectric (ME) multiferroics (MFs) materials, which exhibit electric order and some magnetic order, are of great interest for memory, energy harvesting, and sensing applications. Such ME MFs can be :(i) single-phase MFs and (ii) biphasic MFs. In this work, structural, ferroelectric, magnetic and ME properties of thin films of both type of ME MFs were studied. Facile and cost-effective solution-methods were used to fabricate thin films and nanocomposites of ME MF materials. The single-phase DyCrO3 and GdFe0.5Cr0.5O3 thin films showed magnetically induced dielectric behavior and independent magnetic/electric orders, respectively. In biphasic nanocomposites, concentration and connectivity of two phases play an important role in defining the ME coupling that is mediated through mechanical strain at the interfaces between the two phases. The ME switching and coupling behavior in the nanocomposite PbZr0.52Ti0.48O3:CoFe2O4 thin films will be presented in detail.","PeriodicalId":380113,"journal":{"name":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric thin films by solution methods\",\"authors\":\"M. Jain\",\"doi\":\"10.1117/12.2647655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoelectric (ME) multiferroics (MFs) materials, which exhibit electric order and some magnetic order, are of great interest for memory, energy harvesting, and sensing applications. Such ME MFs can be :(i) single-phase MFs and (ii) biphasic MFs. In this work, structural, ferroelectric, magnetic and ME properties of thin films of both type of ME MFs were studied. Facile and cost-effective solution-methods were used to fabricate thin films and nanocomposites of ME MF materials. The single-phase DyCrO3 and GdFe0.5Cr0.5O3 thin films showed magnetically induced dielectric behavior and independent magnetic/electric orders, respectively. In biphasic nanocomposites, concentration and connectivity of two phases play an important role in defining the ME coupling that is mediated through mechanical strain at the interfaces between the two phases. The ME switching and coupling behavior in the nanocomposite PbZr0.52Ti0.48O3:CoFe2O4 thin films will be presented in detail.\",\"PeriodicalId\":380113,\"journal\":{\"name\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2647655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2647655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁电(ME)多铁性(MFs)材料表现出电有序和一些磁有序,在存储、能量收集和传感应用中具有很大的兴趣。这样的ME mf可以是:(i)单相mf和(ii)双相mf。本文研究了两种mefs薄膜的结构、铁电性、磁性和ME性能。采用简单、经济的溶液法制备了ME - MF材料的薄膜和纳米复合材料。单相DyCrO3和GdFe0.5Cr0.5O3薄膜分别表现出磁致介电行为和独立的磁/电序。在双相纳米复合材料中,两相的浓度和连通性在两相界面处通过机械应变介导的ME耦合中起着重要作用。详细介绍了PbZr0.52Ti0.48O3:CoFe2O4纳米复合薄膜中的ME开关和耦合行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetoelectric thin films by solution methods
Magnetoelectric (ME) multiferroics (MFs) materials, which exhibit electric order and some magnetic order, are of great interest for memory, energy harvesting, and sensing applications. Such ME MFs can be :(i) single-phase MFs and (ii) biphasic MFs. In this work, structural, ferroelectric, magnetic and ME properties of thin films of both type of ME MFs were studied. Facile and cost-effective solution-methods were used to fabricate thin films and nanocomposites of ME MF materials. The single-phase DyCrO3 and GdFe0.5Cr0.5O3 thin films showed magnetically induced dielectric behavior and independent magnetic/electric orders, respectively. In biphasic nanocomposites, concentration and connectivity of two phases play an important role in defining the ME coupling that is mediated through mechanical strain at the interfaces between the two phases. The ME switching and coupling behavior in the nanocomposite PbZr0.52Ti0.48O3:CoFe2O4 thin films will be presented in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信