血氧水平依赖功能磁共振成像的多重分形分析

Catarina Runa Miranda, Filipe Soares, I. Sousa, F. Janela, M. Secca
{"title":"血氧水平依赖功能磁共振成像的多重分形分析","authors":"Catarina Runa Miranda, Filipe Soares, I. Sousa, F. Janela, M. Secca","doi":"10.1109/ISSPIT.2011.6151572","DOIUrl":null,"url":null,"abstract":"The aim of this work is to propose a multifractal analysis method for Multifractal Detrended Fluctuation analysis (MF-DFA) of Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI). The fMRI signals exhibit a 1/f power spectrum, hence their structure has self-similarity and long memory, being usually successfully analyzed by different fractal analysis methods without a previous knowledge of haemodynamic models. Therefore, to validate activation detection using the MF-DFA method, a comparison study between images obtained using General Linear Model (GLM) and Independent Component Analysis (ICA) was conducted and evaluated by discrimination power, applying Receiver Operating Characteristic (ROC) analysis to the results.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multifractal analysis of blood oxygen level dependent functional magnetic resonance imaging\",\"authors\":\"Catarina Runa Miranda, Filipe Soares, I. Sousa, F. Janela, M. Secca\",\"doi\":\"10.1109/ISSPIT.2011.6151572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to propose a multifractal analysis method for Multifractal Detrended Fluctuation analysis (MF-DFA) of Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI). The fMRI signals exhibit a 1/f power spectrum, hence their structure has self-similarity and long memory, being usually successfully analyzed by different fractal analysis methods without a previous knowledge of haemodynamic models. Therefore, to validate activation detection using the MF-DFA method, a comparison study between images obtained using General Linear Model (GLM) and Independent Component Analysis (ICA) was conducted and evaluated by discrimination power, applying Receiver Operating Characteristic (ROC) analysis to the results.\",\"PeriodicalId\":288042,\"journal\":{\"name\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2011.6151572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是提出一种用于血氧水平依赖(BOLD)功能磁共振成像(fMRI)的多重分形去趋势波动分析(MF-DFA)的多重分形分析方法。fMRI信号具有1/f功率谱,因此其结构具有自相似性和长记忆性,通常可以在不了解血流动力学模型的情况下通过不同的分形分析方法成功分析。因此,为了验证MF-DFA方法的激活检测效果,我们对采用一般线性模型(General Linear Model, GLM)和独立分量分析(Independent Component Analysis, ICA)获得的图像进行了对比研究,并对结果进行了Receiver Operating Characteristic (ROC)分析,通过判别能力进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal analysis of blood oxygen level dependent functional magnetic resonance imaging
The aim of this work is to propose a multifractal analysis method for Multifractal Detrended Fluctuation analysis (MF-DFA) of Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI). The fMRI signals exhibit a 1/f power spectrum, hence their structure has self-similarity and long memory, being usually successfully analyzed by different fractal analysis methods without a previous knowledge of haemodynamic models. Therefore, to validate activation detection using the MF-DFA method, a comparison study between images obtained using General Linear Model (GLM) and Independent Component Analysis (ICA) was conducted and evaluated by discrimination power, applying Receiver Operating Characteristic (ROC) analysis to the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信