关于拟阵的相关间隙

Edin Husi'c, Zhuan Khye Koh, Georg Loho, L. V'egh
{"title":"关于拟阵的相关间隙","authors":"Edin Husi'c, Zhuan Khye Koh, Georg Loho, L. V'egh","doi":"10.48550/arXiv.2209.09896","DOIUrl":null,"url":null,"abstract":"A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least $1-1/e$, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted matroid rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Correlation Gap of Matroids\",\"authors\":\"Edin Husi'c, Zhuan Khye Koh, Georg Loho, L. V'egh\",\"doi\":\"10.48550/arXiv.2209.09896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least $1-1/e$, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted matroid rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.\",\"PeriodicalId\":421894,\"journal\":{\"name\":\"Conference on Integer Programming and Combinatorial Optimization\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Integer Programming and Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.09896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.09896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

集合函数可以通过多种方式扩展到单位立方体;相关差衡量的是两个自然延伸之间的比率。该数量已被确定为一系列近似算法和机制设计设置中的性能保证。已知单调子模函数的相关间隙至少为$1-1/e$,这对于简单的矩阵秩函数是紧的。我们对矩阵秩函数的相关间隙进行了细致的研究。特别地,我们提出了一个改进的相关间隙下界,它是由矩阵的秩和周长参数化的。我们还证明了对于任意矩阵,其加权矩阵秩函数的相关间隙在等权下是最小的。这种改进的下界直接应用于矩阵约束下的子模最大化、机制设计和争用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Correlation Gap of Matroids
A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least $1-1/e$, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted matroid rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信