浓缩聚合物粘度模型的分析

Miroslav Bul'ivcek, P. Gwiazda, E. Suli, Agnieszka Świerczewska-Gwiazda
{"title":"浓缩聚合物粘度模型的分析","authors":"Miroslav Bul'ivcek, P. Gwiazda, E. Suli, Agnieszka Świerczewska-Gwiazda","doi":"10.1142/S0218202516500391","DOIUrl":null,"url":null,"abstract":"The paper is concerned with a class of mathematical models for polymeric\nfluids, which involves the coupling of the Navier-Stokes equations for a\nviscous, incompressible, constant-density fluid with a parabolic-hyperbolic\nintegro-differential equation describing the evolution of the polymer\ndistribution function in the solvent, and a parabolic integro-differential\nequation for the evolution of the monomer density function in the solvent. The\nviscosity coefficient appearing in the balance of linear momentum equation in\nthe Navier-Stokes system includes dependence on the shear-rate as well as on\nthe weight-averaged polymer chain length. The system of partial differential\nequations under consideration captures the impact of polymerization and\ndepolymerization effects on the viscosity of the fluid. We prove the existence\nof global-in-time, large-data weak solutions under fairly general hypotheses.","PeriodicalId":238120,"journal":{"name":"ORA review team","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of a viscosity model for concentrated polymers\",\"authors\":\"Miroslav Bul'ivcek, P. Gwiazda, E. Suli, Agnieszka Świerczewska-Gwiazda\",\"doi\":\"10.1142/S0218202516500391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with a class of mathematical models for polymeric\\nfluids, which involves the coupling of the Navier-Stokes equations for a\\nviscous, incompressible, constant-density fluid with a parabolic-hyperbolic\\nintegro-differential equation describing the evolution of the polymer\\ndistribution function in the solvent, and a parabolic integro-differential\\nequation for the evolution of the monomer density function in the solvent. The\\nviscosity coefficient appearing in the balance of linear momentum equation in\\nthe Navier-Stokes system includes dependence on the shear-rate as well as on\\nthe weight-averaged polymer chain length. The system of partial differential\\nequations under consideration captures the impact of polymerization and\\ndepolymerization effects on the viscosity of the fluid. We prove the existence\\nof global-in-time, large-data weak solutions under fairly general hypotheses.\",\"PeriodicalId\":238120,\"journal\":{\"name\":\"ORA review team\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORA review team\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218202516500391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORA review team","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218202516500391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一类聚合物流体的数学模型,它将粘性、不可压缩、等密度流体的Navier-Stokes方程与描述聚合物分布函数在溶剂中的演化的抛物-双曲积分-微分方程和描述溶剂中单体密度函数演化的抛物积分-微分方程耦合在一起。在Navier-Stokes体系中,出现在线性动量方程平衡中的黏度系数不仅与聚合物链长有关,还与剪切速率有关。所考虑的偏微分方程组反映了聚合和解聚效应对流体粘度的影响。我们在相当一般的假设下证明了全局实时、大数据弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a viscosity model for concentrated polymers
The paper is concerned with a class of mathematical models for polymeric fluids, which involves the coupling of the Navier-Stokes equations for a viscous, incompressible, constant-density fluid with a parabolic-hyperbolic integro-differential equation describing the evolution of the polymer distribution function in the solvent, and a parabolic integro-differential equation for the evolution of the monomer density function in the solvent. The viscosity coefficient appearing in the balance of linear momentum equation in the Navier-Stokes system includes dependence on the shear-rate as well as on the weight-averaged polymer chain length. The system of partial differential equations under consideration captures the impact of polymerization and depolymerization effects on the viscosity of the fluid. We prove the existence of global-in-time, large-data weak solutions under fairly general hypotheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信