通过语法进化生成艺术

Erik M. Fredericks, Abigail C. Diller, Jared M. Moore
{"title":"通过语法进化生成艺术","authors":"Erik M. Fredericks, Abigail C. Diller, Jared M. Moore","doi":"10.1109/GI59320.2023.00010","DOIUrl":null,"url":null,"abstract":"Generative art produces artistic output via algorithmic design. Common examples include flow fields, particle motion, and mathematical formula visualization. Typically an art piece is generated with the artist/programmer acting as a domain expert to create the final output. A large amount of effort is often spent manipulating and/or refining parameters or algorithms and observing the resulting changes in produced images. Small changes to parameters of the various techniques can substantially alter the final product. We present GenerativeGI, a proof of concept evolutionary framework for creating generative art based on an input suite of artistic techniques and desired aesthetic preferences for outputs. GenerativeGI encodes artistic techniques in a grammar, thereby enabling multiple techniques to be combined and optimized via a many-objective evolutionary algorithm. Specific combinations of evolutionary objectives can help refine outputs reflecting the aesthetic preferences of the designer. Experimental results indicate that GenerativeGI can successfully produce more visually complex outputs than those found by random search.","PeriodicalId":414492,"journal":{"name":"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generative Art via Grammatical Evolution\",\"authors\":\"Erik M. Fredericks, Abigail C. Diller, Jared M. Moore\",\"doi\":\"10.1109/GI59320.2023.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative art produces artistic output via algorithmic design. Common examples include flow fields, particle motion, and mathematical formula visualization. Typically an art piece is generated with the artist/programmer acting as a domain expert to create the final output. A large amount of effort is often spent manipulating and/or refining parameters or algorithms and observing the resulting changes in produced images. Small changes to parameters of the various techniques can substantially alter the final product. We present GenerativeGI, a proof of concept evolutionary framework for creating generative art based on an input suite of artistic techniques and desired aesthetic preferences for outputs. GenerativeGI encodes artistic techniques in a grammar, thereby enabling multiple techniques to be combined and optimized via a many-objective evolutionary algorithm. Specific combinations of evolutionary objectives can help refine outputs reflecting the aesthetic preferences of the designer. Experimental results indicate that GenerativeGI can successfully produce more visually complex outputs than those found by random search.\",\"PeriodicalId\":414492,\"journal\":{\"name\":\"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GI59320.2023.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GI59320.2023.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生成艺术通过算法设计产生艺术输出。常见的例子包括流场、粒子运动和数学公式可视化。通常美术作品是由美工/程序员作为领域专家来生成最终输出的。大量的工作通常花费在操纵和/或改进参数或算法上,并观察生成图像的结果变化。各种技术参数的微小变化可以大大改变最终产品。我们提出了GenerativeGI,这是一个概念进化框架的证明,用于基于艺术技术的输入套件和输出的期望美学偏好来创建生成艺术。GenerativeGI用语法对艺术技巧进行编码,从而使多种技巧能够通过多目标进化算法进行组合和优化。进化目标的特定组合可以帮助完善反映设计师审美偏好的输出。实验结果表明,与随机搜索相比,GenerativeGI可以成功地生成更复杂的视觉输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Art via Grammatical Evolution
Generative art produces artistic output via algorithmic design. Common examples include flow fields, particle motion, and mathematical formula visualization. Typically an art piece is generated with the artist/programmer acting as a domain expert to create the final output. A large amount of effort is often spent manipulating and/or refining parameters or algorithms and observing the resulting changes in produced images. Small changes to parameters of the various techniques can substantially alter the final product. We present GenerativeGI, a proof of concept evolutionary framework for creating generative art based on an input suite of artistic techniques and desired aesthetic preferences for outputs. GenerativeGI encodes artistic techniques in a grammar, thereby enabling multiple techniques to be combined and optimized via a many-objective evolutionary algorithm. Specific combinations of evolutionary objectives can help refine outputs reflecting the aesthetic preferences of the designer. Experimental results indicate that GenerativeGI can successfully produce more visually complex outputs than those found by random search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信