基于达尔文布谷鸟搜索算法的多级图像阈值分割方法

E. Ehsaeyan, A. Zolghadrasli
{"title":"基于达尔文布谷鸟搜索算法的多级图像阈值分割方法","authors":"E. Ehsaeyan, A. Zolghadrasli","doi":"10.1142/S0219467821500522","DOIUrl":null,"url":null,"abstract":"Image segmentation is a prime operation to understand the content of images. Multilevel thresholding is applied in image segmentation because of its speed and accuracy. In this paper, a novel multilevel thresholding algorithm based on Cuckoo search (CS) is introduced. One of the major drawbacks of metaheuristic algorithms is the stagnation phenomenon which leads to a fall into local optimums and premature convergence. To overcome this shortcoming, the idea of Darwinian theory is incorporated with CS algorithm to increase the diversity and quality of the individuals without decreasing the convergence speed of CS algorithm. A policy of encouragement and punishment is considered to lead searching agents in the search space and reduce the computational time. The algorithm is implemented based on dividing the population into specified groups and each group tries to find a better location. Ten test images are selected to verify the ability of our algorithm using the famous energy curve method. Two popular entropies criteria, Otsu and Kapur, are employed to evaluate the capability of the introduced algorithm. Eight different search algorithms are also implemented and compared with our method. Experimental results manifest that DCS is a powerful tool for multilevel thresholding and the obtained results outperform the CS algorithm and other heuristic search methods.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Image Thresholding Method Using the Darwinian Cuckoo Search Algorithm\",\"authors\":\"E. Ehsaeyan, A. Zolghadrasli\",\"doi\":\"10.1142/S0219467821500522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a prime operation to understand the content of images. Multilevel thresholding is applied in image segmentation because of its speed and accuracy. In this paper, a novel multilevel thresholding algorithm based on Cuckoo search (CS) is introduced. One of the major drawbacks of metaheuristic algorithms is the stagnation phenomenon which leads to a fall into local optimums and premature convergence. To overcome this shortcoming, the idea of Darwinian theory is incorporated with CS algorithm to increase the diversity and quality of the individuals without decreasing the convergence speed of CS algorithm. A policy of encouragement and punishment is considered to lead searching agents in the search space and reduce the computational time. The algorithm is implemented based on dividing the population into specified groups and each group tries to find a better location. Ten test images are selected to verify the ability of our algorithm using the famous energy curve method. Two popular entropies criteria, Otsu and Kapur, are employed to evaluate the capability of the introduced algorithm. Eight different search algorithms are also implemented and compared with our method. Experimental results manifest that DCS is a powerful tool for multilevel thresholding and the obtained results outperform the CS algorithm and other heuristic search methods.\",\"PeriodicalId\":177479,\"journal\":{\"name\":\"Int. J. Image Graph.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Image Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219467821500522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467821500522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分割是理解图像内容的基本操作。多层阈值分割因其速度快、精度高而被广泛应用于图像分割。提出了一种基于布谷鸟搜索(Cuckoo search, CS)的多层阈值分割算法。元启发式算法的主要缺点之一是停滞现象,导致陷入局部最优和过早收敛。为了克服这一缺点,CS算法中加入了达尔文理论的思想,在不降低CS算法收敛速度的前提下,增加了个体的多样性和质量。采用奖惩策略引导搜索主体进入搜索空间,减少计算时间。该算法是基于将人口划分为特定的组,每个组试图找到一个更好的位置来实现的。选取10张测试图像,利用著名的能量曲线法验证算法的能力。采用两种常用的熵准则Otsu和Kapur来评价所引入算法的性能。还实现了八种不同的搜索算法,并与我们的方法进行了比较。实验结果表明,DCS是一种强大的多级阈值分割工具,所得结果优于CS算法和其他启发式搜索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multilevel Image Thresholding Method Using the Darwinian Cuckoo Search Algorithm
Image segmentation is a prime operation to understand the content of images. Multilevel thresholding is applied in image segmentation because of its speed and accuracy. In this paper, a novel multilevel thresholding algorithm based on Cuckoo search (CS) is introduced. One of the major drawbacks of metaheuristic algorithms is the stagnation phenomenon which leads to a fall into local optimums and premature convergence. To overcome this shortcoming, the idea of Darwinian theory is incorporated with CS algorithm to increase the diversity and quality of the individuals without decreasing the convergence speed of CS algorithm. A policy of encouragement and punishment is considered to lead searching agents in the search space and reduce the computational time. The algorithm is implemented based on dividing the population into specified groups and each group tries to find a better location. Ten test images are selected to verify the ability of our algorithm using the famous energy curve method. Two popular entropies criteria, Otsu and Kapur, are employed to evaluate the capability of the introduced algorithm. Eight different search algorithms are also implemented and compared with our method. Experimental results manifest that DCS is a powerful tool for multilevel thresholding and the obtained results outperform the CS algorithm and other heuristic search methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信