{"title":"为推荐系统数据集创建高级内容描述符","authors":"Nicolás Torres, Marcelo Mendoza","doi":"10.1109/SCCC.2018.8705247","DOIUrl":null,"url":null,"abstract":"Information Retrieval and Recommender Systems have been frequently evaluated using indexes based on variants and extensions of precision-like measures. Likewise, approaches for diversity evaluation have been proposed. However, these measures are usually defined in terms of a set of high level content descriptors known as information nuggets that are hard to obtain. We propose a method to create these nuggets using social tags, providing datasets with annotations to evaluate content diversity in recommender systems. Since recommending items to a target user is analogous to searching documents from a query, this method might be extended to Information Retrieval.","PeriodicalId":235495,"journal":{"name":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating High Level Content Descriptors for Recommender Systems Datasets\",\"authors\":\"Nicolás Torres, Marcelo Mendoza\",\"doi\":\"10.1109/SCCC.2018.8705247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information Retrieval and Recommender Systems have been frequently evaluated using indexes based on variants and extensions of precision-like measures. Likewise, approaches for diversity evaluation have been proposed. However, these measures are usually defined in terms of a set of high level content descriptors known as information nuggets that are hard to obtain. We propose a method to create these nuggets using social tags, providing datasets with annotations to evaluate content diversity in recommender systems. Since recommending items to a target user is analogous to searching documents from a query, this method might be extended to Information Retrieval.\",\"PeriodicalId\":235495,\"journal\":{\"name\":\"2018 37th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2018.8705247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2018.8705247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Creating High Level Content Descriptors for Recommender Systems Datasets
Information Retrieval and Recommender Systems have been frequently evaluated using indexes based on variants and extensions of precision-like measures. Likewise, approaches for diversity evaluation have been proposed. However, these measures are usually defined in terms of a set of high level content descriptors known as information nuggets that are hard to obtain. We propose a method to create these nuggets using social tags, providing datasets with annotations to evaluate content diversity in recommender systems. Since recommending items to a target user is analogous to searching documents from a query, this method might be extended to Information Retrieval.