Charoula Andreou, Franziska Halbritter, Derek M. Rogge, R. Müller
{"title":"多尺度波段划分对丰度估计的影响","authors":"Charoula Andreou, Franziska Halbritter, Derek M. Rogge, R. Müller","doi":"10.1109/WHISPERS.2016.8071706","DOIUrl":null,"url":null,"abstract":"Materials of interest comprised in a hyperspectral image often present intra-class spectral variability inherent to their natural compositional make-up. Obtaining the best spectral representations of such materials with respect to a given application is critical for both identification and spatial mapping. Recently, a multiscaled-band partitioning (MSBP) approach has been developed for detecting and clustering spectrally similar but physically distinct materials. In this work, it is examined 1) whether the endmember clusters of the multiscaled-band partitioning contribute to an improved abundance estimation compared to other endmember extraction methods and, 2) to what extent different unmixing strategies can retain the spectral variability of the extracted endmember clusters in the resulted abundance maps. Experiments were conducted using an airborne hyperspectral dataset highlighting the potential of MSBP for the unmixing process in case of materials with intra-class variability.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of the multiscaled-band partitioning on the abundance estimation\",\"authors\":\"Charoula Andreou, Franziska Halbritter, Derek M. Rogge, R. Müller\",\"doi\":\"10.1109/WHISPERS.2016.8071706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials of interest comprised in a hyperspectral image often present intra-class spectral variability inherent to their natural compositional make-up. Obtaining the best spectral representations of such materials with respect to a given application is critical for both identification and spatial mapping. Recently, a multiscaled-band partitioning (MSBP) approach has been developed for detecting and clustering spectrally similar but physically distinct materials. In this work, it is examined 1) whether the endmember clusters of the multiscaled-band partitioning contribute to an improved abundance estimation compared to other endmember extraction methods and, 2) to what extent different unmixing strategies can retain the spectral variability of the extracted endmember clusters in the resulted abundance maps. Experiments were conducted using an airborne hyperspectral dataset highlighting the potential of MSBP for the unmixing process in case of materials with intra-class variability.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of the multiscaled-band partitioning on the abundance estimation
Materials of interest comprised in a hyperspectral image often present intra-class spectral variability inherent to their natural compositional make-up. Obtaining the best spectral representations of such materials with respect to a given application is critical for both identification and spatial mapping. Recently, a multiscaled-band partitioning (MSBP) approach has been developed for detecting and clustering spectrally similar but physically distinct materials. In this work, it is examined 1) whether the endmember clusters of the multiscaled-band partitioning contribute to an improved abundance estimation compared to other endmember extraction methods and, 2) to what extent different unmixing strategies can retain the spectral variability of the extracted endmember clusters in the resulted abundance maps. Experiments were conducted using an airborne hyperspectral dataset highlighting the potential of MSBP for the unmixing process in case of materials with intra-class variability.