用于数字取证分析的不干净、嘈杂或混乱数据集的文本挖掘

Konstantinos F. Xylogiannopoulos, P. Karampelas, R. Alhajj
{"title":"用于数字取证分析的不干净、嘈杂或混乱数据集的文本挖掘","authors":"Konstantinos F. Xylogiannopoulos, P. Karampelas, R. Alhajj","doi":"10.1109/EISIC.2017.19","DOIUrl":null,"url":null,"abstract":"In our era, most of the communication between people is realized in the form of electronic messages and especially through smart mobile devices. As such, the written text exchanged suffers from bad use of punctuation, misspelling words, continuous chunk of several words without spaces, tables, internet addresses etc. which make traditional text analytics methods difficult or impossible to be applied without serious effort to clean the dataset. Our proposed method in this paper can work in massive noisy and scrambled texts with minimal preprocessing by removing special characters and spaces in order to create a continuous string and detect all the repeated patterns very efficiently using the Longest Expected Repeated Pattern Reduced Suffix Array (LERP-RSA) data structure and a variant of All Repeated Patterns Detection (ARPaD) algorithm. Meta-analyses of the results can further assist a digital forensics investigator to detect important information to the chunk of text analyzed.","PeriodicalId":436947,"journal":{"name":"2017 European Intelligence and Security Informatics Conference (EISIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Text Mining in Unclean, Noisy or Scrambled Datasets for Digital Forensics Analytics\",\"authors\":\"Konstantinos F. Xylogiannopoulos, P. Karampelas, R. Alhajj\",\"doi\":\"10.1109/EISIC.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our era, most of the communication between people is realized in the form of electronic messages and especially through smart mobile devices. As such, the written text exchanged suffers from bad use of punctuation, misspelling words, continuous chunk of several words without spaces, tables, internet addresses etc. which make traditional text analytics methods difficult or impossible to be applied without serious effort to clean the dataset. Our proposed method in this paper can work in massive noisy and scrambled texts with minimal preprocessing by removing special characters and spaces in order to create a continuous string and detect all the repeated patterns very efficiently using the Longest Expected Repeated Pattern Reduced Suffix Array (LERP-RSA) data structure and a variant of All Repeated Patterns Detection (ARPaD) algorithm. Meta-analyses of the results can further assist a digital forensics investigator to detect important information to the chunk of text analyzed.\",\"PeriodicalId\":436947,\"journal\":{\"name\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在我们这个时代,人与人之间的大部分沟通都是以电子信息的形式实现的,尤其是通过智能移动设备。因此,交换的书面文本遭受标点符号使用不当,单词拼写错误,连续的几个单词块没有空格,表格,互联网地址等,这使得传统的文本分析方法很难或不可能应用,除非认真清理数据集。本文提出的方法可以在大量噪声和混乱的文本中工作,只需最少的预处理,通过去除特殊字符和空格来创建连续的字符串,并使用最长期望重复模式减少后缀数组(LERP-RSA)数据结构和所有重复模式检测(ARPaD)算法的变体非常有效地检测所有重复模式。结果的荟萃分析可以进一步帮助数字取证调查员检测到分析文本块的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Mining in Unclean, Noisy or Scrambled Datasets for Digital Forensics Analytics
In our era, most of the communication between people is realized in the form of electronic messages and especially through smart mobile devices. As such, the written text exchanged suffers from bad use of punctuation, misspelling words, continuous chunk of several words without spaces, tables, internet addresses etc. which make traditional text analytics methods difficult or impossible to be applied without serious effort to clean the dataset. Our proposed method in this paper can work in massive noisy and scrambled texts with minimal preprocessing by removing special characters and spaces in order to create a continuous string and detect all the repeated patterns very efficiently using the Longest Expected Repeated Pattern Reduced Suffix Array (LERP-RSA) data structure and a variant of All Repeated Patterns Detection (ARPaD) algorithm. Meta-analyses of the results can further assist a digital forensics investigator to detect important information to the chunk of text analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信