Jing Wu, Andres Jacoby, D. Llamocca, B. Sangeorzan
{"title":"一种曲柄角分解发动机气缸压力实时估计的体系结构","authors":"Jing Wu, Andres Jacoby, D. Llamocca, B. Sangeorzan","doi":"10.1109/EIT.2018.8500176","DOIUrl":null,"url":null,"abstract":"This work presents a custom hardware architecture for crank-angle-resolved engine cylinder pressure estimation that can accept inputs such as speed, manifold pressure and throttle position, and deliver cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines (up to 10,000 rpm). The hardware, placed in a reconfigurable embedded system for real-time validation, was tested using results of a model derived from actual engine data (13 sets). The hardware, implemented in 32-bit Dual Fixed-Point arithmetic, exhibits results that are very close to those of a 64-bit floating-point software model. This work attempts to show Dual Fixed-Point as a good alternative for high precision operations in automotive applications, where floating point is believed to be the only option.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Architecture for Real-Time Estimation of Crank-Angle-Resolved Engine Cylinder Pressure\",\"authors\":\"Jing Wu, Andres Jacoby, D. Llamocca, B. Sangeorzan\",\"doi\":\"10.1109/EIT.2018.8500176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a custom hardware architecture for crank-angle-resolved engine cylinder pressure estimation that can accept inputs such as speed, manifold pressure and throttle position, and deliver cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines (up to 10,000 rpm). The hardware, placed in a reconfigurable embedded system for real-time validation, was tested using results of a model derived from actual engine data (13 sets). The hardware, implemented in 32-bit Dual Fixed-Point arithmetic, exhibits results that are very close to those of a 64-bit floating-point software model. This work attempts to show Dual Fixed-Point as a good alternative for high precision operations in automotive applications, where floating point is believed to be the only option.\",\"PeriodicalId\":188414,\"journal\":{\"name\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2018.8500176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Architecture for Real-Time Estimation of Crank-Angle-Resolved Engine Cylinder Pressure
This work presents a custom hardware architecture for crank-angle-resolved engine cylinder pressure estimation that can accept inputs such as speed, manifold pressure and throttle position, and deliver cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines (up to 10,000 rpm). The hardware, placed in a reconfigurable embedded system for real-time validation, was tested using results of a model derived from actual engine data (13 sets). The hardware, implemented in 32-bit Dual Fixed-Point arithmetic, exhibits results that are very close to those of a 64-bit floating-point software model. This work attempts to show Dual Fixed-Point as a good alternative for high precision operations in automotive applications, where floating point is believed to be the only option.