{"title":"具有无限个与环境守恒环节的生物系统中的奇点跃迁","authors":"A. Moldavanov","doi":"10.17150/2713-1734.2021.3(4).270-278","DOIUrl":null,"url":null,"abstract":"Stages of natural evolution such as biogenesis and abiogenesis are the well-recognized terms to characterize the very different phases of life development. Traditionally, an abiogenesis is believed as the early stage of evolution that is mainly the chemistry phase dealing with intercoupling between the complex polymer chains when manifestations of life assumes substantial participation of cooperative effects. It its turn, a biogenesis as the subsequent stage of evolution is the period for prevalence of Darwin’s laws showing, in particular, in battle among separate species in the way of variability-heredity contest. In this article, we discuss possible nature of the transition between above stages as a normal result of progress in an evolutionary system simulated by mathematical model of open system with infinite number of conserved links with system surroundings. It is shown that the biosystem, in transition point experiences the deep reconstruction in existing pattern of energy exchange which leads to emergence of the more complicated and advanced stage of evolution. Our study showed that the found transition point can be considered as a singularity point in system evolution. In its turn, the evolution stages with the dissimilar meaning are the physical placeholders for stage of abiogenesis and biogenesis in natural evolution, correspondingly.","PeriodicalId":389652,"journal":{"name":"System Analysis & Mathematical Modeling","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularity Transition in Biosystem with Infinite Number of Conserved Links with Surroundings\",\"authors\":\"A. Moldavanov\",\"doi\":\"10.17150/2713-1734.2021.3(4).270-278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stages of natural evolution such as biogenesis and abiogenesis are the well-recognized terms to characterize the very different phases of life development. Traditionally, an abiogenesis is believed as the early stage of evolution that is mainly the chemistry phase dealing with intercoupling between the complex polymer chains when manifestations of life assumes substantial participation of cooperative effects. It its turn, a biogenesis as the subsequent stage of evolution is the period for prevalence of Darwin’s laws showing, in particular, in battle among separate species in the way of variability-heredity contest. In this article, we discuss possible nature of the transition between above stages as a normal result of progress in an evolutionary system simulated by mathematical model of open system with infinite number of conserved links with system surroundings. It is shown that the biosystem, in transition point experiences the deep reconstruction in existing pattern of energy exchange which leads to emergence of the more complicated and advanced stage of evolution. Our study showed that the found transition point can be considered as a singularity point in system evolution. In its turn, the evolution stages with the dissimilar meaning are the physical placeholders for stage of abiogenesis and biogenesis in natural evolution, correspondingly.\",\"PeriodicalId\":389652,\"journal\":{\"name\":\"System Analysis & Mathematical Modeling\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System Analysis & Mathematical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17150/2713-1734.2021.3(4).270-278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System Analysis & Mathematical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17150/2713-1734.2021.3(4).270-278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Singularity Transition in Biosystem with Infinite Number of Conserved Links with Surroundings
Stages of natural evolution such as biogenesis and abiogenesis are the well-recognized terms to characterize the very different phases of life development. Traditionally, an abiogenesis is believed as the early stage of evolution that is mainly the chemistry phase dealing with intercoupling between the complex polymer chains when manifestations of life assumes substantial participation of cooperative effects. It its turn, a biogenesis as the subsequent stage of evolution is the period for prevalence of Darwin’s laws showing, in particular, in battle among separate species in the way of variability-heredity contest. In this article, we discuss possible nature of the transition between above stages as a normal result of progress in an evolutionary system simulated by mathematical model of open system with infinite number of conserved links with system surroundings. It is shown that the biosystem, in transition point experiences the deep reconstruction in existing pattern of energy exchange which leads to emergence of the more complicated and advanced stage of evolution. Our study showed that the found transition point can be considered as a singularity point in system evolution. In its turn, the evolution stages with the dissimilar meaning are the physical placeholders for stage of abiogenesis and biogenesis in natural evolution, correspondingly.