蛇形机器人的修正蛇形方程

M. Dehghani, M. Mahjoob
{"title":"蛇形机器人的修正蛇形方程","authors":"M. Dehghani, M. Mahjoob","doi":"10.1109/ROBIO.2009.4913248","DOIUrl":null,"url":null,"abstract":"This paper presents a modified set of serpenoid equations to navigate snake robots more efficiently. Serpentine gait is recognized as the most efficient gait for snakes in terms of energy, motor torques and friction forces. However, the conventional serpentine model is based on fixed parameters. Changing parameters to reach an optimal motion or avoid bumping to obstacles causes the robot parts slip. Using serpenoid curve is therefore no longer optimal due to the side slipping; the modified serpenoid equations presented here develops a serpenoid curve with variable parameters such that the motion remains optimal even when the parameters are changed. The results of simulations conducted here, representing motor torques and friction forces, show the efficiency of applying this method to a real robot.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A modified serpenoid equation for snake robots\",\"authors\":\"M. Dehghani, M. Mahjoob\",\"doi\":\"10.1109/ROBIO.2009.4913248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a modified set of serpenoid equations to navigate snake robots more efficiently. Serpentine gait is recognized as the most efficient gait for snakes in terms of energy, motor torques and friction forces. However, the conventional serpentine model is based on fixed parameters. Changing parameters to reach an optimal motion or avoid bumping to obstacles causes the robot parts slip. Using serpenoid curve is therefore no longer optimal due to the side slipping; the modified serpenoid equations presented here develops a serpenoid curve with variable parameters such that the motion remains optimal even when the parameters are changed. The results of simulations conducted here, representing motor torques and friction forces, show the efficiency of applying this method to a real robot.\",\"PeriodicalId\":321332,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2009.4913248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了提高蛇形机器人的导航效率,提出了一种改进的蛇形方程。蛇形步态被认为是蛇在能量、电机扭矩和摩擦力方面最有效的步态。然而,传统的蛇形模型是基于固定参数的。改变参数以达到最佳运动或避免碰撞障碍物会导致机器人零件滑动。因此,由于侧滑,使用蛇形曲线不再是最佳的;本文提出的修正的蛇形曲线方程给出了一个变参数的蛇形曲线,即使参数改变,运动也能保持最优。在此进行的模拟结果,表示电机扭矩和摩擦力,表明了将该方法应用于实际机器人的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified serpenoid equation for snake robots
This paper presents a modified set of serpenoid equations to navigate snake robots more efficiently. Serpentine gait is recognized as the most efficient gait for snakes in terms of energy, motor torques and friction forces. However, the conventional serpentine model is based on fixed parameters. Changing parameters to reach an optimal motion or avoid bumping to obstacles causes the robot parts slip. Using serpenoid curve is therefore no longer optimal due to the side slipping; the modified serpenoid equations presented here develops a serpenoid curve with variable parameters such that the motion remains optimal even when the parameters are changed. The results of simulations conducted here, representing motor torques and friction forces, show the efficiency of applying this method to a real robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信