S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr
{"title":"计算模糊矩阵的特征值和特征向量","authors":"S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr","doi":"10.5899/2012/JFSVA-00120","DOIUrl":null,"url":null,"abstract":"Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing the eigenvalues and eigenvectors of a fuzzy matrix\",\"authors\":\"S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr\",\"doi\":\"10.5899/2012/JFSVA-00120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2012/JFSVA-00120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2012/JFSVA-00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing the eigenvalues and eigenvectors of a fuzzy matrix
Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e