计算模糊矩阵的特征值和特征向量

S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr
{"title":"计算模糊矩阵的特征值和特征向量","authors":"S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr","doi":"10.5899/2012/JFSVA-00120","DOIUrl":null,"url":null,"abstract":"Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing the eigenvalues and eigenvectors of a fuzzy matrix\",\"authors\":\"S. Salahshour, F. Karimi, A. Kumar, Kermanshah Branch, R. Rodr\",\"doi\":\"10.5899/2012/JFSVA-00120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2012/JFSVA-00120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2012/JFSVA-00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

模糊矩阵的模糊特征值和模糊特征向量的计算是一个具有挑战性的问题。确定最大和最小对称解有助于找到特征值。因此,我们试着通过确定全模糊线性系统的最大和最小对称解来计算这些特征值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the eigenvalues and eigenvectors of a fuzzy matrix
Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system e A e X = e e
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信