三维对称曲率对偶定理

A. Yuille, M. Leyton
{"title":"三维对称曲率对偶定理","authors":"A. Yuille,&nbsp;M. Leyton","doi":"10.1016/0734-189X(90)90126-G","DOIUrl":null,"url":null,"abstract":"<div><p>We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"52 1","pages":"Pages 124-140"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90126-G","citationCount":"20","resultStr":"{\"title\":\"3D symmetry-curvature duality theorems\",\"authors\":\"A. Yuille,&nbsp;M. Leyton\",\"doi\":\"10.1016/0734-189X(90)90126-G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.</p></div>\",\"PeriodicalId\":100319,\"journal\":{\"name\":\"Computer Vision, Graphics, and Image Processing\",\"volume\":\"52 1\",\"pages\":\"Pages 124-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0734-189X(90)90126-G\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision, Graphics, and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0734189X9090126G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X9090126G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们证明了三维物体表面曲率与对称轴存在性之间的对偶性定理。更准确地说,我们证明了,给定一个曲面,对于沿曲率线的每一个主曲率的极大值或极小值,存在一个终止于该点的对称轴。而且,这些点通常是这些轴可以终止的唯一点。这些定理推广了莱顿在二维物体上得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D symmetry-curvature duality theorems

We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信