使用librAIry分发文本挖掘任务

Carlos Badenes-Olmedo, José Luis Redondo García, Óscar Corcho
{"title":"使用librAIry分发文本挖掘任务","authors":"Carlos Badenes-Olmedo, José Luis Redondo García, Óscar Corcho","doi":"10.1145/3103010.3121040","DOIUrl":null,"url":null,"abstract":"We present librAIry, a novel architecture to store, process and analyze large collections of textual resources, integrating existing algorithms and tools into a common, distributed, high-performance workflow. Available text mining techniques can be incorporated as independent plug&play modules working in a collaborative manner into the framework. In the absence of a pre-defined flow, librAIry leverages on the aggregation of operations executed by different components in response to an emergent chain of events. Extensive use of Linked Data (LD) and Representational State Transfer (REST) principles are made to provide individually addressable resources from textual documents. We have described the architecture design and its implementation and tested its effectiveness in real-world scenarios such as collections of research papers, patents or ICT aids, with the objective of providing solutions for decision makers and experts in those domains. Major advantages of the framework and lessons-learned from these experiments are reported.","PeriodicalId":200469,"journal":{"name":"Proceedings of the 2017 ACM Symposium on Document Engineering","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Distributing Text Mining tasks with librAIry\",\"authors\":\"Carlos Badenes-Olmedo, José Luis Redondo García, Óscar Corcho\",\"doi\":\"10.1145/3103010.3121040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present librAIry, a novel architecture to store, process and analyze large collections of textual resources, integrating existing algorithms and tools into a common, distributed, high-performance workflow. Available text mining techniques can be incorporated as independent plug&play modules working in a collaborative manner into the framework. In the absence of a pre-defined flow, librAIry leverages on the aggregation of operations executed by different components in response to an emergent chain of events. Extensive use of Linked Data (LD) and Representational State Transfer (REST) principles are made to provide individually addressable resources from textual documents. We have described the architecture design and its implementation and tested its effectiveness in real-world scenarios such as collections of research papers, patents or ICT aids, with the objective of providing solutions for decision makers and experts in those domains. Major advantages of the framework and lessons-learned from these experiments are reported.\",\"PeriodicalId\":200469,\"journal\":{\"name\":\"Proceedings of the 2017 ACM Symposium on Document Engineering\",\"volume\":\"1999 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3103010.3121040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3103010.3121040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了librAIry,这是一种存储、处理和分析大量文本资源的新架构,将现有的算法和工具集成到一个通用的、分布式的、高性能的工作流中。可用的文本挖掘技术可以作为独立的即插即用模块以协作的方式集成到框架中。在没有预定义流的情况下,librAIry利用由不同组件执行的操作聚合来响应紧急事件链。广泛使用关联数据(LD)和具象状态传输(REST)原则,从文本文档中提供可单独寻址的资源。我们描述了架构设计及其实现,并在实际场景(如研究论文、专利或ICT辅助工具的集合)中测试了其有效性,目的是为这些领域的决策者和专家提供解决方案。报告了该框架的主要优点和从这些实验中获得的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributing Text Mining tasks with librAIry
We present librAIry, a novel architecture to store, process and analyze large collections of textual resources, integrating existing algorithms and tools into a common, distributed, high-performance workflow. Available text mining techniques can be incorporated as independent plug&play modules working in a collaborative manner into the framework. In the absence of a pre-defined flow, librAIry leverages on the aggregation of operations executed by different components in response to an emergent chain of events. Extensive use of Linked Data (LD) and Representational State Transfer (REST) principles are made to provide individually addressable resources from textual documents. We have described the architecture design and its implementation and tested its effectiveness in real-world scenarios such as collections of research papers, patents or ICT aids, with the objective of providing solutions for decision makers and experts in those domains. Major advantages of the framework and lessons-learned from these experiments are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信