用小波分析预测马来西亚经济周期

Samsul Ariffin Abdul Karim, Bakri Abdul Karim, F. Andersson, M. Hasan, J. Sulaiman, R. Razali
{"title":"用小波分析预测马来西亚经济周期","authors":"Samsul Ariffin Abdul Karim, Bakri Abdul Karim, F. Andersson, M. Hasan, J. Sulaiman, R. Razali","doi":"10.1109/ISBEIA.2011.6088841","DOIUrl":null,"url":null,"abstract":"Wavelet transforms are capable to decompose time series at various level which corresponds to the resolution of the decomposition. We can find the trend, cycle, noise, structural break etc. This is where wavelets are so efficient in studying characteristics of the any time series. In this present article, we study the use of wavelet (symlet 16) to detect the business cycle in Malaysia. Firstly we decompose the time series then we study the long-run trend and we filtered the high frequency components and finally we find the business cycle in Malaysia. The results indicated the existence of business cycles for GDP data in Malaysia which is strongly counter-cyclical.","PeriodicalId":358440,"journal":{"name":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Malaysia business cycle using wavelet analysis\",\"authors\":\"Samsul Ariffin Abdul Karim, Bakri Abdul Karim, F. Andersson, M. Hasan, J. Sulaiman, R. Razali\",\"doi\":\"10.1109/ISBEIA.2011.6088841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet transforms are capable to decompose time series at various level which corresponds to the resolution of the decomposition. We can find the trend, cycle, noise, structural break etc. This is where wavelets are so efficient in studying characteristics of the any time series. In this present article, we study the use of wavelet (symlet 16) to detect the business cycle in Malaysia. Firstly we decompose the time series then we study the long-run trend and we filtered the high frequency components and finally we find the business cycle in Malaysia. The results indicated the existence of business cycles for GDP data in Malaysia which is strongly counter-cyclical.\",\"PeriodicalId\":358440,\"journal\":{\"name\":\"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBEIA.2011.6088841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBEIA.2011.6088841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小波变换能够在不同的层次上分解时间序列,这与分解的分辨率相对应。我们可以发现趋势,周期,噪音,结构断裂等。这就是小波在研究任何时间序列的特征时如此有效的地方。在本文中,我们研究了使用小波(符号16)来检测马来西亚的商业周期。首先我们分解时间序列,然后研究长期趋势,过滤高频成分,最后我们找到马来西亚的商业周期。结果表明存在商业周期的GDP数据在马来西亚,这是强烈的反周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Malaysia business cycle using wavelet analysis
Wavelet transforms are capable to decompose time series at various level which corresponds to the resolution of the decomposition. We can find the trend, cycle, noise, structural break etc. This is where wavelets are so efficient in studying characteristics of the any time series. In this present article, we study the use of wavelet (symlet 16) to detect the business cycle in Malaysia. Firstly we decompose the time series then we study the long-run trend and we filtered the high frequency components and finally we find the business cycle in Malaysia. The results indicated the existence of business cycles for GDP data in Malaysia which is strongly counter-cyclical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信