{"title":"一个与经典逻辑相容的相依选择的构造证明","authors":"Hugo Herbelin","doi":"10.1109/LICS.2012.47","DOIUrl":null,"url":null,"abstract":"Martin-Löf's type theory has strong existential elimination (dependent sum type) that allows to prove the full axiom of choice. However the theory is intuitionistic. We give a condition on strong existential elimination that makes it computationally compatible with classical logic. With this restriction, we lose the full axiom of choice but, thanks to a lazily-evaluated coinductive representation of quantification, we are still able to constructively prove the axiom of countable choice, the axiom of dependent choice, and a form of bar induction in ways that make each of them computationally compatible with classical logic.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Constructive Proof of Dependent Choice, Compatible with Classical Logic\",\"authors\":\"Hugo Herbelin\",\"doi\":\"10.1109/LICS.2012.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Martin-Löf's type theory has strong existential elimination (dependent sum type) that allows to prove the full axiom of choice. However the theory is intuitionistic. We give a condition on strong existential elimination that makes it computationally compatible with classical logic. With this restriction, we lose the full axiom of choice but, thanks to a lazily-evaluated coinductive representation of quantification, we are still able to constructively prove the axiom of countable choice, the axiom of dependent choice, and a form of bar induction in ways that make each of them computationally compatible with classical logic.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Constructive Proof of Dependent Choice, Compatible with Classical Logic
Martin-Löf's type theory has strong existential elimination (dependent sum type) that allows to prove the full axiom of choice. However the theory is intuitionistic. We give a condition on strong existential elimination that makes it computationally compatible with classical logic. With this restriction, we lose the full axiom of choice but, thanks to a lazily-evaluated coinductive representation of quantification, we are still able to constructively prove the axiom of countable choice, the axiom of dependent choice, and a form of bar induction in ways that make each of them computationally compatible with classical logic.