{"title":"采用波长为0.85-0.9μm的大功率激光二极管的紧凑型DIAL湿度计","authors":"S. Penchev, V. Pencheva, S. Naboko","doi":"10.1117/12.2262567","DOIUrl":null,"url":null,"abstract":"The spectral range of 0.85 - 0.9μm wavelengths utilized by laser diode (LD) technology contains a relatively intensive spectrum of third rovibrational overtone of the water molecule, pure of interfering spectra of the other major atmospheric gases. We developed a spectroscopic application of pulsed 100W LDs generally limited by their broad, multimode laser line. In fact, their powerful laser radiation propagating in the atmosphere is modulated significantly by multiple resonance absorption lines. The magnitude of the integral absorption pattern is assessed combining theoretical and experimental calibration and using HITRAN database. The resultant absorption spectrum is found to be unsaturated, providing a great dynamic range of measurement of atmospheric humidity within 15% random error of lidar returns ranging to 2km. The reported DIAL technique which utilizes the advantage of direct detection of the lidar profiles and simple operation is prospective for the framework of atmospheric and climatic monitoring.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A compact DIAL hygrometer employing paired powerful laser diodes of 0.85–0.9μm wavelengths\",\"authors\":\"S. Penchev, V. Pencheva, S. Naboko\",\"doi\":\"10.1117/12.2262567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral range of 0.85 - 0.9μm wavelengths utilized by laser diode (LD) technology contains a relatively intensive spectrum of third rovibrational overtone of the water molecule, pure of interfering spectra of the other major atmospheric gases. We developed a spectroscopic application of pulsed 100W LDs generally limited by their broad, multimode laser line. In fact, their powerful laser radiation propagating in the atmosphere is modulated significantly by multiple resonance absorption lines. The magnitude of the integral absorption pattern is assessed combining theoretical and experimental calibration and using HITRAN database. The resultant absorption spectrum is found to be unsaturated, providing a great dynamic range of measurement of atmospheric humidity within 15% random error of lidar returns ranging to 2km. The reported DIAL technique which utilizes the advantage of direct detection of the lidar profiles and simple operation is prospective for the framework of atmospheric and climatic monitoring.\",\"PeriodicalId\":355156,\"journal\":{\"name\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2262567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2262567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact DIAL hygrometer employing paired powerful laser diodes of 0.85–0.9μm wavelengths
The spectral range of 0.85 - 0.9μm wavelengths utilized by laser diode (LD) technology contains a relatively intensive spectrum of third rovibrational overtone of the water molecule, pure of interfering spectra of the other major atmospheric gases. We developed a spectroscopic application of pulsed 100W LDs generally limited by their broad, multimode laser line. In fact, their powerful laser radiation propagating in the atmosphere is modulated significantly by multiple resonance absorption lines. The magnitude of the integral absorption pattern is assessed combining theoretical and experimental calibration and using HITRAN database. The resultant absorption spectrum is found to be unsaturated, providing a great dynamic range of measurement of atmospheric humidity within 15% random error of lidar returns ranging to 2km. The reported DIAL technique which utilizes the advantage of direct detection of the lidar profiles and simple operation is prospective for the framework of atmospheric and climatic monitoring.