鲁棒神经网络软件嵌入式微控制器的精度区域高效在线故障检测

Juneseo Chang, Sejong Oh, Daejin Park
{"title":"鲁棒神经网络软件嵌入式微控制器的精度区域高效在线故障检测","authors":"Juneseo Chang, Sejong Oh, Daejin Park","doi":"10.1109/EMSOFT55006.2022.00008","DOIUrl":null,"url":null,"abstract":"Detecting transient faults in safety-critical neural network (NN) applications operated on embedded systems has become a concern, but it is challenging to achieve high accuracy because of the open context problem and resource constraints. This study proposes an accuracy-area efficient, data-analysis-based online soft errors (SEs) and control flow errors (CFEs) detection, applicable to any NN application with low overhead. We insert code for runtime monitoring data assertion, and the data are distributed to shallow or deep detection models selectively. The shallow detection model detects CFEs by verifying runtime signatures with values obtained from simulations, and detects SEs of data having constant values according to program input. SEs of other data are verified by a deep detection model using a sliding window one-class support vector machine. Fault injection experiments on an image classification NN showed that our detector has significant detection accuracy in fault conditions.","PeriodicalId":371537,"journal":{"name":"2022 International Conference on Embedded Software (EMSOFT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-in-Progress: Accuracy-Area Efficient Online Fault Detection for Robust Neural Network Software-Embedded Microcontrollers\",\"authors\":\"Juneseo Chang, Sejong Oh, Daejin Park\",\"doi\":\"10.1109/EMSOFT55006.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting transient faults in safety-critical neural network (NN) applications operated on embedded systems has become a concern, but it is challenging to achieve high accuracy because of the open context problem and resource constraints. This study proposes an accuracy-area efficient, data-analysis-based online soft errors (SEs) and control flow errors (CFEs) detection, applicable to any NN application with low overhead. We insert code for runtime monitoring data assertion, and the data are distributed to shallow or deep detection models selectively. The shallow detection model detects CFEs by verifying runtime signatures with values obtained from simulations, and detects SEs of data having constant values according to program input. SEs of other data are verified by a deep detection model using a sliding window one-class support vector machine. Fault injection experiments on an image classification NN showed that our detector has significant detection accuracy in fault conditions.\",\"PeriodicalId\":371537,\"journal\":{\"name\":\"2022 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT55006.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT55006.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在嵌入式系统上运行的安全关键型神经网络(NN)应用中,暂态故障检测已成为人们关注的问题,但由于开放上下文问题和资源限制,难以达到较高的准确性。本研究提出了一种精度区域高效、基于数据分析的在线软误差(SEs)和控制流误差(CFEs)检测方法,适用于任何低开销的神经网络应用。我们插入运行时监控数据断言代码,并有选择地将数据分发到浅检测模型或深度检测模型。浅层检测模型通过验证运行时签名与仿真得到的值来检测cfe,并根据程序输入检测具有恒定值的数据的se。采用滑动窗口一类支持向量机的深度检测模型对其他数据的se进行验证。在图像分类神经网络上的故障注入实验表明,该检测器在故障条件下具有显著的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Accuracy-Area Efficient Online Fault Detection for Robust Neural Network Software-Embedded Microcontrollers
Detecting transient faults in safety-critical neural network (NN) applications operated on embedded systems has become a concern, but it is challenging to achieve high accuracy because of the open context problem and resource constraints. This study proposes an accuracy-area efficient, data-analysis-based online soft errors (SEs) and control flow errors (CFEs) detection, applicable to any NN application with low overhead. We insert code for runtime monitoring data assertion, and the data are distributed to shallow or deep detection models selectively. The shallow detection model detects CFEs by verifying runtime signatures with values obtained from simulations, and detects SEs of data having constant values according to program input. SEs of other data are verified by a deep detection model using a sliding window one-class support vector machine. Fault injection experiments on an image classification NN showed that our detector has significant detection accuracy in fault conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信