台湾北部核电厂附近海岸海温变化之卫星影像

Shih-Jen Huang, Jung-Te Lin, Y. Lo, N. Kuo, Chung‐Ru Ho
{"title":"台湾北部核电厂附近海岸海温变化之卫星影像","authors":"Shih-Jen Huang, Jung-Te Lin, Y. Lo, N. Kuo, Chung‐Ru Ho","doi":"10.1109/OCEANS-TAIPEI.2014.6964547","DOIUrl":null,"url":null,"abstract":"In order to estimate the thermal plumes discharged from Chinshan and Kuosheng nuclear power plants on the coast of north Taiwan, this study uses the thermal infrared data from Landsat 7 ETM+(Enhanced Thematic Mapper Surface Temperature) to contrast with the in-situ SST measurement for the intake/discharge ports of the nuclear power plants. The near-infrared (band 4) data of Landsat 7 ETM+ are firstly applied to distinguish ocean and land, and then the thermal infrared (band 6) data are used to estimate SST. The algorithm of SST on north Taiwan is established in this study by the contrast between the in-situ SST data of the two nuclear power plants and the thermal infrared data of Landsat 7 ETM+. The standard deviation of SST retrieved through this algorithm is estimated to be 3.1°C, but the mean difference is near 0. According to the retrieved SST from the satellite data, the warm-plume (>4°C than offshore SST) discharge of Chinshan nuclear power plant reaches 540-1080 m far from its discharge port, but for Kuosheng Nuclear Power Plant, the farthest of the warm-plume discharge from the discharge port is 390-900 m. The retrieved SST gradually gets cooler by diffusion from the discharge port to the offshore. Apparently, the Landsat 7 ETM+ can be applied to measure the special variance of SST. The result also shows the area of significant thermal plume (>4°C than offshore SST) are about 0.01-1.3 km2 and 0.09-8.53 km2 for the Chinshan and Kuosheng nuclear plants respectively. Moreover, the significant thermal plume area is affected by tides. During the flood tide, the warm-plume discharge gets close to the coast, and it will make the significant thermal plume area increase. Besides, the second significant thermal plume (>2°C than offshore SST) is also increased during the ebb tide because the thermal plume may be taken away and diluted from the discharged port. However, due to different topographies, the area of thermal plume of the Kuosheng is broader than that of Chinshan nuclear power plant.","PeriodicalId":114739,"journal":{"name":"OCEANS 2014 - TAIPEI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The coastal sea surface temperature changes near the nuclear power plants of northern Taiwan observed from satellite images\",\"authors\":\"Shih-Jen Huang, Jung-Te Lin, Y. Lo, N. Kuo, Chung‐Ru Ho\",\"doi\":\"10.1109/OCEANS-TAIPEI.2014.6964547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to estimate the thermal plumes discharged from Chinshan and Kuosheng nuclear power plants on the coast of north Taiwan, this study uses the thermal infrared data from Landsat 7 ETM+(Enhanced Thematic Mapper Surface Temperature) to contrast with the in-situ SST measurement for the intake/discharge ports of the nuclear power plants. The near-infrared (band 4) data of Landsat 7 ETM+ are firstly applied to distinguish ocean and land, and then the thermal infrared (band 6) data are used to estimate SST. The algorithm of SST on north Taiwan is established in this study by the contrast between the in-situ SST data of the two nuclear power plants and the thermal infrared data of Landsat 7 ETM+. The standard deviation of SST retrieved through this algorithm is estimated to be 3.1°C, but the mean difference is near 0. According to the retrieved SST from the satellite data, the warm-plume (>4°C than offshore SST) discharge of Chinshan nuclear power plant reaches 540-1080 m far from its discharge port, but for Kuosheng Nuclear Power Plant, the farthest of the warm-plume discharge from the discharge port is 390-900 m. The retrieved SST gradually gets cooler by diffusion from the discharge port to the offshore. Apparently, the Landsat 7 ETM+ can be applied to measure the special variance of SST. The result also shows the area of significant thermal plume (>4°C than offshore SST) are about 0.01-1.3 km2 and 0.09-8.53 km2 for the Chinshan and Kuosheng nuclear plants respectively. Moreover, the significant thermal plume area is affected by tides. During the flood tide, the warm-plume discharge gets close to the coast, and it will make the significant thermal plume area increase. Besides, the second significant thermal plume (>2°C than offshore SST) is also increased during the ebb tide because the thermal plume may be taken away and diluted from the discharged port. However, due to different topographies, the area of thermal plume of the Kuosheng is broader than that of Chinshan nuclear power plant.\",\"PeriodicalId\":114739,\"journal\":{\"name\":\"OCEANS 2014 - TAIPEI\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2014 - TAIPEI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2014 - TAIPEI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究利用Landsat 7 ETM+(Enhanced Thematic Mapper Surface Temperature,增强型地表温度地图)的热红外数据,与现场测量的核电站进/排放口海温进行对比,对台北沿海金山核电站和国胜核电站排放的热羽流进行估算。首先利用Landsat 7 ETM+近红外(波段4)数据区分海洋和陆地,然后利用热红外(波段6)数据估算海温。本研究通过对比两个核电站的现场海温数据和Landsat 7 ETM+的热红外数据,建立了台湾北部海温的计算算法。通过该算法反演的海表温度标准差估计为3.1°C,但均值差接近0。根据卫星资料反演的海温,青山核电站的暖羽(比海上海温>4℃)排放距离排放口540 ~ 1080 m,而国胜核电站的暖羽排放距离排放口最远为390 ~ 900 m。回收的海温通过从排放口向近海扩散逐渐变冷。显然,Landsat 7 ETM+可以用来测量海温的特殊方差。结果还表明,秦山核电站和国胜核电站的显著热羽面积分别约为0.01 ~ 1.3 km2和0.09 ~ 8.53 km2(比海上海温>4°C)。此外,显著的热羽面积受潮汐的影响。在涨潮期间,暖羽流量向海岸靠近,会使显著的热羽面积增大。此外,退潮期间,由于热羽可能被排出口带走和稀释,第二显著热羽(比近海海温>2°C)也有所增加。然而,由于地形不同,国胜核电站的热羽面积比金山核电站的热羽面积大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The coastal sea surface temperature changes near the nuclear power plants of northern Taiwan observed from satellite images
In order to estimate the thermal plumes discharged from Chinshan and Kuosheng nuclear power plants on the coast of north Taiwan, this study uses the thermal infrared data from Landsat 7 ETM+(Enhanced Thematic Mapper Surface Temperature) to contrast with the in-situ SST measurement for the intake/discharge ports of the nuclear power plants. The near-infrared (band 4) data of Landsat 7 ETM+ are firstly applied to distinguish ocean and land, and then the thermal infrared (band 6) data are used to estimate SST. The algorithm of SST on north Taiwan is established in this study by the contrast between the in-situ SST data of the two nuclear power plants and the thermal infrared data of Landsat 7 ETM+. The standard deviation of SST retrieved through this algorithm is estimated to be 3.1°C, but the mean difference is near 0. According to the retrieved SST from the satellite data, the warm-plume (>4°C than offshore SST) discharge of Chinshan nuclear power plant reaches 540-1080 m far from its discharge port, but for Kuosheng Nuclear Power Plant, the farthest of the warm-plume discharge from the discharge port is 390-900 m. The retrieved SST gradually gets cooler by diffusion from the discharge port to the offshore. Apparently, the Landsat 7 ETM+ can be applied to measure the special variance of SST. The result also shows the area of significant thermal plume (>4°C than offshore SST) are about 0.01-1.3 km2 and 0.09-8.53 km2 for the Chinshan and Kuosheng nuclear plants respectively. Moreover, the significant thermal plume area is affected by tides. During the flood tide, the warm-plume discharge gets close to the coast, and it will make the significant thermal plume area increase. Besides, the second significant thermal plume (>2°C than offshore SST) is also increased during the ebb tide because the thermal plume may be taken away and diluted from the discharged port. However, due to different topographies, the area of thermal plume of the Kuosheng is broader than that of Chinshan nuclear power plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信