电信企业客户流失预测的机器学习方法研究

Anna Śniegula, A. Poniszewska-Marańda, M. Popović
{"title":"电信企业客户流失预测的机器学习方法研究","authors":"Anna Śniegula, A. Poniszewska-Marańda, M. Popović","doi":"10.1145/3366030.3366109","DOIUrl":null,"url":null,"abstract":"The paper presents the results of investigation which machine learning techniques are most suited for customer churn prediction. Different approaches were compared, starting from the simple K-means method, through decision trees, ending with the artificial neural network. The authors trained the models with each method and predicted whether a customer is going to leave the current telecommunication company.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study of machine learning methods for customer churn prediction in telecommunication company\",\"authors\":\"Anna Śniegula, A. Poniszewska-Marańda, M. Popović\",\"doi\":\"10.1145/3366030.3366109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of investigation which machine learning techniques are most suited for customer churn prediction. Different approaches were compared, starting from the simple K-means method, through decision trees, ending with the artificial neural network. The authors trained the models with each method and predicted whether a customer is going to leave the current telecommunication company.\",\"PeriodicalId\":446280,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366030.3366109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了哪种机器学习技术最适合客户流失预测的调查结果。比较了不同的方法,从简单的K-means方法开始,经过决策树,最后以人工神经网络结束。作者用每种方法训练模型,并预测客户是否会离开当前的电信公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of machine learning methods for customer churn prediction in telecommunication company
The paper presents the results of investigation which machine learning techniques are most suited for customer churn prediction. Different approaches were compared, starting from the simple K-means method, through decision trees, ending with the artificial neural network. The authors trained the models with each method and predicted whether a customer is going to leave the current telecommunication company.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信