移动机器人的一种自我训练方法

V. Golovko, Oleg Ignatiuk, R. Sadykhov
{"title":"移动机器人的一种自我训练方法","authors":"V. Golovko, Oleg Ignatiuk, R. Sadykhov","doi":"10.1109/IDAACS.2001.941969","DOIUrl":null,"url":null,"abstract":"The unsupervised learning of an autonomous mobile robot is a real research topic. It permits an artificial system to interact successfully with its environment and to avoid obstacles. This paper presents an intelligent control architecture which integrates self-training methods and is able to operate in complex, unknown environments in order to achieve its target. Our approach is based on reactive obstacle avoidance. The intelligent model integrates different neural networks and permits on-line learning. The results of experiments are discussed.","PeriodicalId":419022,"journal":{"name":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to self-training of the mobile robot\",\"authors\":\"V. Golovko, Oleg Ignatiuk, R. Sadykhov\",\"doi\":\"10.1109/IDAACS.2001.941969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsupervised learning of an autonomous mobile robot is a real research topic. It permits an artificial system to interact successfully with its environment and to avoid obstacles. This paper presents an intelligent control architecture which integrates self-training methods and is able to operate in complex, unknown environments in order to achieve its target. Our approach is based on reactive obstacle avoidance. The intelligent model integrates different neural networks and permits on-line learning. The results of experiments are discussed.\",\"PeriodicalId\":419022,\"journal\":{\"name\":\"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2001.941969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2001.941969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自主移动机器人的无监督学习是一个重要的研究课题。它允许人工系统成功地与环境相互作用并避开障碍。本文提出了一种集成了自我训练方法的智能控制体系结构,能够在复杂、未知的环境中运行,以实现其目标。我们的方法是基于反应性避障。智能模型集成了不同的神经网络,允许在线学习。对实验结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to self-training of the mobile robot
The unsupervised learning of an autonomous mobile robot is a real research topic. It permits an artificial system to interact successfully with its environment and to avoid obstacles. This paper presents an intelligent control architecture which integrates self-training methods and is able to operate in complex, unknown environments in order to achieve its target. Our approach is based on reactive obstacle avoidance. The intelligent model integrates different neural networks and permits on-line learning. The results of experiments are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信